Вирус гриппа рнк содержащий. Вирусные рнк


Из известных в настоящее время вирусов человека и животных геном 80% вирусов содержит РНК. Использование РНК в качестве носителя генетической информации является уникальной особенностью вирусов. Структура вирусных РНК чрезвычайно разнообразна. У вирусов обнаружены одно- и двунитевые, линейные, фрагментированные и кольцевые РНК. Как правило, геном РНК-содержащих вирусов является гаплоидным, за исключением ретровирусов , у которых он представлен двумя молекулами идентичных РНК и является диплоидным. Размеры геномной вирусной РНК имеют существенные ограничения и не превышают 30000 н.о. (см. " Нуклеиновые кислоты вирионов ").

По своему происхождению одноцепочечные вирионные РНК могут представлять либо мРНК (РНК позитивной полярности), способную обеспечить синтез белков на рибосомах , либо РНК негативной полярности, которая обычно возникает в качестве интермедиата при репликации РНК вирусных геномов. Исключение составляют ретровирусы , у которых в качестве репликативного интермедиата выступает ДНК-копия вирусной РНК. Необходимо отметить, что вирусная геномная РНК позитивной полярности после введения в чувствительные клетки способна вызывать инфекционный процесс, в результате которого формируются полноценные вирусные частицы. Впервые инфекционность вирусных РНК была продемонстрирована X. Френкель-Конратом и соавт. в 1957 г., а также А. Гирером и Г. Шраммом в 1958 г. с использованием геномной РНК ВТМ . Геномная РНК негативной полярности не обладает инфекционностью. Например, геномная РНК вирусов гриппа , парамиксовирусов , рабдовирусов , представленная минус-цепями, полностью лишена инфекционной активности. У этих вирусов для инфекционности необходим комплекс геномной РНК с вирусными белками, способными обеспечить эффективную транскрипцию вирионной РНК. Таким образом, инфекционность геномной РНК зависит от ее происхождения и функций.

Структурная организация геномных РНК находится в полном соответствии с их полярностью. Вирусная геномная РНК позитивной полярности, которая выполняет функции мРНК, имеет все специфические структурные особенности, характерные для матриц трансляции: 5"-концевой нуклеотид модифицирован присоединением 5"-метилгуанозинового остатка (5"-m7GpppGm), получившего название кэпа (от англ. cap - шапка). З"-конец таких вирионных РНК обычно снабжен poly(A)-последовательностью, характерной для мРНК эукариот. Имеются последовательности, обеспечивающие связывание с рибосомой , участки регуляции и терминации трансляции . В последовательностях вирионных РНК позитивной полярности можно также обнаружить такие, которые обеспечивают специфическое взаимодействие с вирусными белками, участвующими в сборке вирусных частиц. За счет этого осуществляется высокоселективное попадание в состав вирионов только вирусных РНК. У некоторых вирусов с плюс-РНК геномом можно наблюдать некоторые отклонения от приведенной схемы. В частности, геномная РНК вируса полиомиелита на 5"-конце вместо канонической структуры кэпа содержит терминальный белок VPg , присоединенный к концевому остатку урацила . У некоторых групп вирусов отсутствует poly(A)-фрагмент на З"-конце. Геномные РНК отрицательной полярности лишены всех характерных для мРНК атрибутов посттрансляционной модификации (кэпа, poly(A)-последовательностей и т. д.).

Обычно у одного вида вируса геном бывает представлен только одним типом РНК - либо положительной, либо отрицательной полярности. Однако имеется ряд вирусов с так называемым амбиполярным геномом (например, у тосповирусов из трех сегментов РНК один имеет отрицательную полярность, а два - амбиполярны). Это означает, что мРНК являются фрагментами как геномной, так и комплементарной ей цепи. Сходная ситуация наблюдается и у аренавирусов .

Среди вирусов животных, растений, грибов и бактерий широко распространены имеющие в качестве генома двунитевые РНК. Этот необычный для клетки тип нуклеиновой кислоты, впервые обнаруженный у реовирусов . Вирусы, содержащие подобный геном, называют диплорнавирусы . Одной из особенностей диплорнавирусов является фрагментированное состояние генома. Так, геном реовирусов состоит из 10 фрагментов, ротавирусов - из 11.

Укладка нуклеиновых кислот в составе вириона носит строго упорядоченный характер, который обеспечивается за счет образования комплексов нуклеиновой кислоты с так называемыми нуклеокапсидными белками. Помимо вирусных нуклеиновых кислот в составе вирионов могут присутствовать и клеточные нуклеиновые кислоты. В вирионах обнаруживают рибосомные РНК (28S, 18S), транспортные РНК и низкомолекулярные РНК (4S, 5S). В случае аренавирусов в составе вириона присутствуют целые рибосомные субъединицы. Появление клеточных компонентов в вирионах часто отражает процессы случайного захвата клеточного материала при их сборке. Однако в ряде случаев такое включение клеточных компонентов является необходимым условием поддержания инфекционности вирусов.

От лат. «virus» - яд

Вирусы - это внеклеточная форма жизни, обладающая собственным геномом и способная к воспроизведению только в клетках живых организмов.

Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенных в белковую оболочку (капсид), иногда содержащую также липидные и углеводные компоненты

Диаметр вирусных частиц (их называют также вирионами) равен 20-300 нм. Т.е. они намного меньше, чем мельчайшие из прокариотических клеток. Так как размеры белков и некоторых ам.к. находятся в диапазоне 2-50 нм, то вирусную частицу можно было бы считать просто комплексом макромолекул. Вследствие их малых размеров и неспособности к самовоспроизведению вирусы часто относят к разряду «неживого».

Говорят «Вирус – это промежуточная форма жизни, или нежизни», т.к. вне клетки хозяина он превращается в кристалл.

Говорят: в. это переход от химии к живому

Жизненный цикл вируса начинается

1. с проникновения внутрь клетки.

2. Для этого он связывается со специфическими рецепторами на ее поверхности и

а) либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на ее поверхности,

б) либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует его «раздевание» - освобождение геномных нуклеиновых кислот от белков оболочки.

3. В результате этой процедуры вирусный геном становится доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса.

4. Именно после проникновения вирусной геномной нуклеиновой кислоты в клетку заключенная в ней генетическая информация расшифровывается генетическими системами хозяина и используется для синтеза компонентов вирусных частиц.

По сравнению с геномами других организмов вирусный геном относительно мал и кодирует лишь ограниченное число белков, в основном белки капсида и один или несколько белков, участвующих в репликации и экспрессии вирусного генома. Необходимые метаболиты и энергия поставляются хозяйской клеткой.


ДНК-содержащие вирусы несут в качестве генетического материала либо одно-, либо двухцепочечную ДНК, которая может быть как линейной, так и кольцевой. В ДНК закодирована информация о всех белках вируса. Вирусы классифицируют в зависимости от того, одно или двухцепочечная у них ДНК, и про- или эукариотической является клетка-хозяин. Вирусы заражающие бактерии называются бактериофагами.

1 - вирусы оспы; 2 - вирусы герпеса; 3 – аденовирусы; 4 - паповавирусы; 5 - гепаднавирусы; 6 - парвовирусы;

Первая группа - вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме: ДНК -»РНК -> ДНК.

- они получили название ретроидные вирусы.

- п редставителями этой группы вирусов являются вирус гепатита В и вирус мозаики цветной капусты.

1. Репликация ДНК-генома этих вирусов осуществляется при посредстве промежуточных молекул РНК:

2. Молекулы РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом ДНК-зависимой РНК-полимеразой.

3. Транскрибируется только одна из нитей вирусной ДНК.

4. Синтез ДНК на РНК-матрице происходит в результате реакции, катализируемой обратной транскриптазой; сначала синтезируется (-) нить ДНК,

5. а затем на вновь синтезированной (-) нити ДНК тот же фермент строит (+) нить.

В целом общая схема репликации генома ретроидных вирусов поразительно похожа на схему репликации генома ретровирусов. По-видимому, данное сходство имеет под собой и эволюционную основу, так как первичная структура обратных транскриптаз этих вирусов выявляет определенное сходство между собой.

Вторая группа - вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме ДНК -> ДНК.

- с генома этих вирусов в зараженной клетке ДНК-зависимая РНК-полимераза транскрибирует молекулы мРНК (т.е. (+) РНК),

МРНК (т.е. (+) РНК) принимает участие в синтезе вирусных белков,

Размножение вирусного генома осуществляет фермент ДНК-зависимая ДНК-полимераза:

(±) днк → (+)РНК

В одних случаях производством как мРНК, так и ДНК занимаются клеточные ферменты; в других случаях вирусы используют собственные ферменты. Бывает, что те и другие ферменты обслуживают процесс репликации и транскрипции. К этой группе относятся вирусы герпеса, оспы и др.

- вирус герпеса

Оспа – естественный враг СПИДа (нет оспы – есть СПИД). О СПИДе есть информация в Ветхом завете. В нашем геноме есть генетические метки прежних пандемий СПИДа

Вирусные заболевания периодичны: ОСПА → ПРОКАЗА→ЧУМА → †

Третья группа - вирусы с одноцепочечной ДНК, либо с негативной, либо с позитивной полярностью.

- Попав в клетку, вирусный геном сначала превращается в двуцепочечную форму,

- это превращение обеспечивает клеточная ДНК-зависимая ДНК-полимераза:

или (±) ДНК → (+) РНК

Транскрипция и репликация на последующих этапах происходит так же, как и для вирусов, с (±) ДНК-геномом.

Структура вируса: это молекула ДНК в белковой оболочке, называемой капсидом. Однако есть много разных вариантов строения вирусов: от просто покрытой белком ДНК (например, бактериофаг Pf1) до сложных макромолекулярных комплексов, окруженных мембранными структурами, например, вирус оспы. Если у вируса есть мембрана‚ говорят, что он в оболочке, а если мембраны нет, то вирус называют «раздетым». Различают четыре основных вида капсидов: спиральные, икосаэдрические, сложные без оболочки, сложные с оболочкой.(см. презентация)

Спиральные капсиды

- обычно встречаются у нитевидных вирусов.

Образуются путем самосборки асимметричных белковых субъединиц (капсомеров), объединяющихся в трубчатую структуру со спиральной симметрией (например у Pf1).

Субъединицы в большинстве случаев гомогенны, так, что поверхность вириона состоит из множества копий одного и того же белка, хотя под наружним капсидом могут находиться и другие белки.

ДНК в таких вирусах либо вытянута, либо может быть туго скручена в комплексе со специальными связывающими белками.

Икосаэдрические капсиды

Свойственны большинству сферических ДНК-содержащих вирусов

Икосаэдр – это многогранник с двадцатью треугольными гранями, имеющий кубическую симметрию и приблизительно сферическую форму.

Вершины треугольников соединяясь образуют двенадцать вершин икосаэдра;

В местах соединения располагаются обычно пентамерные белковые структуры – пентоны; там же могут находится участки, на которых формируются белковые нити, нередко ассоциированные с вершинами (например у ф Х174 прозрачка 1).

Грани икосаэдра заполнены другими белковыми субъединицами, сгруппированными обычно в гексамерные структуры – гексоны (апример, у аденовируса прозрачка 1).

Количество субъединиц, необходиимое для заполнения граней, определяется размерами вириона в целом, и разные икосаэдрические вирусы содержат поэтому разное число гексонов – обычно при неизменном числе пентонов.

ДНК обычно плотно свернута внутри капсида;

Иногда она связана с белками или полипептидами, способными стабилизировать ее структуру.

Сложные капсиды без оболочки

Типичны для бактериофагов:

Они состоят из частей с разными типами симметрии.

У бактериофага Т2, например, ДНК находится в икосаэдрической головке, а для «узнавания» бактерии и введения в нее ДНК служат трубчатые и фибриллярные структуры (в узнавании участвует также лизоцим, расположенный на дистальном конце хвостового отростка).

Сложные капсиды с оболочкой

Есть только у вирусов эукариотических клеток.

В них ДНК-белковые комплексы окружены одним или несколькими белковыми слоями и наружней мембраной, почти все белковые компоненты которой являются вирусными по своему происхождению, а липидные структуры – клеточными.

Инфицирование – процесс, посредством которого вирус внедряется в клетку-хозяина и «настраивает» ее метаболический аппарат на воспроизведение вирионов.

Зараженные вирусом клетки либо остаются живыми (тогда говорят, что вирус невирулентен),

Либо подвергаются лизису, приводящему к высвобождению вирусных частиц.

Неизменным итогом заражения клеток ДНК-содержащими бактериофагами является лизис.

- ДНК-содержащие вирусы животных вызывают лизис редко; однако клетки могут погибнуть из-за возникших при заражении хромосомных повреждений, вследствии иммунологической реакцииорганизма или просто в результате нарушения вирусом нормальных клеточных функций.

Размножение вируса – четко очерченный цикл, приводящий в конечном счете, после синтеза новых молекул вирусных белков и большого числа копий вирусной ДНК, к формированию зрелых вирусных частиц. У вирусов бактерий весь цикл может завершаться менее чем за час, тогда как у многих вирусов животных он занимает не один день.

Адсорбция вируса на клетке-хозяине – первый этап инфицирования. Она происходит на специфических рецепторных участках (белковых или липидных) клеточной поверхности, которые узнаются особыми выступающими частями вириона и к которым он прочно прикрепляется. У вирусов без оболочки такими частями могут быть белковые отростки (например, у аденовируса и бактериофага Т2), а у вирусов с оболочкой это, как правило белки, погруженные в вирусную мембрану. В процессе адсорбции осуществляются, в частности, такие белок-белковые взаимодействия, результатом которых является инициация стадии проникновения ДНК в клетку.

Экспрессия и репликация вирусного генома

Требования и ограничения

В ходе эволюции вирусов сложилось несколько стратегий, обеспечивающих: а) организацию вирусных генов и их кодирую­щую функцию, б) экспрессию вирусных генов, в) репликацию вирусных геномов и г) сборку и созревание вирусного потом­ства.

Прежде чем мы рассмотрим каждое из этих положений в деталях, стоит напомнить, что ключевым моментом в реплика­ции вирусов является использование для синтеза вирусных бел­ков хозяйских структур, синтезирующих белки клетки. Независи­мо от размеров, состава и организации своего генома вирус должен предоставить белоксинтезирующему аппарату эукариоти-ческой клетки информационную РНК, которую клетка должна распознать и транслировать. В этом отношении клетка навязы­вает вирусу два ограничения.

Во-первых, клетка синтезирует в ядре свою собственную мРНК путем транскрипции своей ДНК и последующего постранскрипционного процессинга транскрип­та. Поэтому в клетке: а) ни в ядре, ни в цитоплазме нет фер* ментов, необходимых для транскрипции мРНК с вирусного РНК-генома, и б) в цитоплазме нет ферментов, способных транскрибировать вирусную ДНК. В связи с этим клеточную транскриптазу для синтеза вирусных мРНК могут использовать только вирусы, содержащие ДНК и способные проникать в яд­ро. Все другие вирусы вынуждены создавать собственные фер­менты для синтеза мРНК.

Второе ограничение состоит в том, что синтезирующий аппарат эукариотических клеток приспособ­лен только для трансляции моноцистронных мРНК, так как он не распознает внутренних участков инициации в мРНК. В ре­зультате вирусы вынуждены синтезировать либо отдельные мРНК для каждого гена (функционально моноцистронная мРНК), либо мРНК, включающую несколько генов и кодирую­щую большой «полипротеин», который затем разрезается на индивидуальные белки.

Вирусные гены кодированы либо в РНК, либо в ДНК, кото­рые могут быть либо одно-, либо двухцепочечными. Кроме того, геномы могут быть либо монолитными, когда все гены вируса содержатся в одной хромосоме, либо состоять из раздельных блоков , которые все вместе и составляют геном вируса. Во избежание ошибок мы обозначаем как «геномную» только нук­леиновую кислоту, которая заключена в вирионах.

Для удобства сначала лучше обсудить РНК-содержащие ви­русы, фокусируя внимание прежде всего на функции геномной РНК.

Вирусы с одноцепочечной РНК можно подразделить на три группы. В первую группу входят пикорнавирусы и тогавирусы. Их геномы выполняют две функции (рис. 5.2 и 5.3). Во-первых, они функционируют как мРНК. Вирусы, геном которых может служить в качестве мРНК, принято называть вирусами с пози­тивным геномом. РНК пикорнавирусов после проникновения в клетку связывается с рибосомами и полностью транслируется. Затем продукт этой трансляции - полипротеин - рас­щепляется. Во-вторых, геномные РНК выполняют функцию мат­рицы для синтеза на ней комплементарных минус-цепей при уча­стии полимеразы, появившейся в результате расщепления поли­протеина. Образуется двуспиральная репликативная форма. На ее минус-цепях синтезируются новые плюс-цепи, которые могут использоваться в качестве а) мРНК, б) матриц для синтеза новых минус-цепей и в) составной части вирусных частиц потомства.


Размножение пикорнавирусов.

Тогавирусы и ряд других вирусов с позитивным геномом отличаются от пикорнавирусов в одном отношении: для трансляции в первом цикле синтеза белков доступна только часть их геномной РНК. Вероятной функцией образующихся при этом белков является способность транскрибировать геномную РНК. Они осуществляют синтез минус-цепи, которая в свою оче­редь служит матрицей для синтеза двух различных по размеру классов молекул плюс-РНК. В клетках, зараженных тогавирусами, РНК первого класса представлены небольшими молеку­лами мРНК, фланкирующими участок геномной РНК, который не транслировался в первом цикле. Образующиеся на них поли­протеины расщепляются на белки, которые играют структурную роль в вирионах. Плюс-РНК второго класса состоит из полнораз­мерных цепей, которые упаковываются в вирионы.

Размножение тогавирусов.

Главным в репликации вирусов с позитивным геномом являет­ся способность геномной РНК служить в качестве мРНК после заражения. Это имеет двоякие последствия. Во-первых, фермен­ты, ответственные за репликацию генома, синтезируются после заражения, и нет необходимости в их внесении в зараженную клетку вместе с вирионом. Вот почему «голая» РНК, экстраги­рованная из вирионов, инфекционна. Во-вторых, так как все позитивные геномы относятся к монолитным и все их гены со­средоточены в одной хромосоме, первичный продукт трансляции обеих РНК (как геномной, так и мРНК) обязательно представ­ляет собой единый белок. Продукты трансляции пикорнавиру-сов и тогавирусов должны быть затем расщеплены на индиви­дуальные белки, которые и обнаруживаются в вирионе или в зараженной клетке.

Их геномная РНК выполняет две матричные функции: во-первых, для транскрипции и, во-вто­рых, для репликации. В связи с тем что для синтеза мРНК должен транскрибироваться вирусный геном, а в клетках соот­ветствующие ферменты отсутствуют, все вирусы с негативным геномом содержат в вирионе кроме вирусного генома транскриптазу. Транскрипция вирусного генома - первое событие после проникновения вируса в клетку, в результате которого накапли­ваются функционально активные моноцистронные мРНК [пози­тивные, или плюс-цепи], кодирующие один белок. Репликацию начинают новосинтезированные вирусные белки, катализирую­щие образование полной плюс-цепи, которая служит матрицей для синтеза геномной минус-РНК (рис. 5.4).

Главное в репликации вирусов с негативным геномом заклю­чается в том, что геномная РНК функционирует как матрица и для транскрипции, и для репликации. Отсюда следует, что, во-первых, вирус должен внести с собой в зараженную клетку транскриптазу; во-вторых, «голая» РНК, экстрагированная из вирионов, неинфекционна; в-третьих, синтезируемые мРНК име­ют длину одного гена, они кодируют один белок - единичный полипептид. Присутствие сигналов сплайсинга в опреде­ленных участках может обеспечить формирование нескольких мРНК (каждая из кото­рых кодирует особый белок) с одного и того же участка генома. Следовательно, плюс-транскрипт, функционирующий в качестве мРНК, отличается от плюс-РНК, служащей матрицей для вирус­ного потомства, хотя и первый, и вторая синтезируются на геномной РНК. Кроме РНК-транскриптазы в репликации вирусной РНК участвуют вирусиндуцированнные: репликаза 1 (обрзование репликативной формы) и репликаза 2 (синтез вирионных -нитей).

Размножение ортомиксовирусов и парамиксовирусов.

Ортомиксовирусы (вирусы гриппа А; В;С) генм представлен не одной а набором односпиральных РНК (грипп птиц и человека 8-7фрагментов). В структуре вириона:

– РНК зависимая РНК полимераза (синтез +нитей,

– две разновидности РНК полимераз

РНК транскриптаза (синтез +нитей в начале инфекции,

РНК репликаза (– нитей в конце инфекции)

Ретровирусы входят в третью группу РНК-содержащих ви­руссов .

Характерно, что геномы ретровирусов монолит­ны, но имеют диплоидную структуру, и обе цепи либо частично соединены водородными связями друг с другом, либо спарены неизвестным до настоящего времени образом. Единственная из­вестная функция геномной РНК - матричная функция для син­теза вирусной ДНК. Поскольку эукариотические клетки не име­ют для этого соответствующих ферментов, вирион кроме генома содержит еще и РНК-зависимую ДНК-полимеразу (обратную транскриптазу 1), а также смесь тРНК хозяина, одна из которых служит в качестве затравки. В цикле репродукции можно выде­лить следующие ключевые ступени: а) связывание комплекса тРНК -обратная транскриптаза с геномной РНК; б) синтез ДНК-копии, комплементарной по отношению к РНК, с переходом полимеразы с одной молекулы РНК-матрицы на другую, что приводит к образованию кольцевой одноцепочечной молекулы ДНК, связанной водородными связями с линейной геномной РНК; в) расщепление геномной РНК нуклеазой, атакующей только РНК в ДНК-РНК-гибридах (рибонуклеазои Н, также содержащейся в вирионе), и г) синтез комплементарной копии вирусной ДНК. Затем кольцевая двухцепочечная ДНК переме­щается в ядро, где интегрирует с геномом хозяина, но последую­щая экспрессия вирусных генов не обязательна. Если экспрес­сия происходит, то интегрированная.вирусная ДНК транскриби­руется транскриптазой клетки-хозяина. Продуктами транскрип­ции являются молекулы РНК, как равные по длине молекуле генома, так и более короткие мРНК-транскрипты нескольких соседних генов, которые транслируются с образованием поли­протеинов. Полипротеины затем расщепляются на отдельные ви­русные белки. В состав вирионов включаются только транскрип­ты, содержащие весь геном.

Размножение ретровирусов.


От лат. «virus» - яд

Вирусы - это внеклеточная форма жизни, обладающая собственным геномом и способная к воспроизведению только в клетках живых организмов.

Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенных в белковую оболочку (капсид), иногда содержащую также липидные и углеводные компоненты

Диаметр вирусных частиц (их называют также вирионами) равен 20-300 нм. Т.е. они намного меньше, чем мельчайшие из прокариотических клеток. Так как размеры белков и некоторых ам.к. находятся в диапазоне 2-50 нм, то вирусную частицу можно было бы считать просто комплексом макромолекул. Вследствие их малых размеров и неспособности к самовоспроизведению вирусы часто относят к разряду «неживого».

Говорят «Вирус – это промежуточная форма жизни, или нежизни», т.к. вне клетки хозяина он превращается в кристалл.

Говорят: в. это переход от химии к живому

Жизненный цикл вируса начинается

1. с проникновения внутрь клетки.

2. Для этого он связывается со специфическими рецепторами на ее поверхности и

а) либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на ее поверхности,

б) либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует его «раздевание» - освобождение геномных нуклеиновых кислот от белков оболочки.

3. В результате этой процедуры вирусный геном становится доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса.

4. Именно после проникновения вирусной геномной нуклеиновой кислоты в клетку заключенная в ней генетическая информация расшифровывается генетическими системами хозяина и используется для синтеза компонентов вирусных частиц.

По сравнению с геномами других организмов вирусный геном относительно мал и кодирует лишь ограниченное число белков, в основном белки капсида и один или несколько белков, участвующих в репликации и экспрессии вирусного генома. Необходимые метаболиты и энергия поставляются хозяйской клеткой.


ДНК-содержащие вирусы несут в качестве генетического материала либо одно-, либо двухцепочечную ДНК, которая может быть как линейной, так и кольцевой. В ДНК закодирована информация о всех белках вируса. Вирусы классифицируют в зависимости от того, одно или двухцепочечная у них ДНК, и про- или эукариотической является клетка-хозяин. Вирусы заражающие бактерии называются бактериофагами.

1 - вирусы оспы; 2 - вирусы герпеса; 3 – аденовирусы; 4 - паповавирусы; 5 - гепаднавирусы; 6 - парвовирусы;

Первая группа - вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме: ДНК -»РНК -> ДНК.

- они получили название ретроидные вирусы.

- п редставителями этой группы вирусов являются вирус гепатита В и вирус мозаики цветной капусты.

1. Репликация ДНК-генома этих вирусов осуществляется при посредстве промежуточных молекул РНК:

2. Молекулы РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом ДНК-зависимой РНК-полимеразой.

3. Транскрибируется только одна из нитей вирусной ДНК.

4. Синтез ДНК на РНК-матрице происходит в результате реакции, катализируемой обратной транскриптазой; сначала синтезируется (-) нить ДНК,

5. а затем на вновь синтезированной (-) нити ДНК тот же фермент строит (+) нить.

В целом общая схема репликации генома ретроидных вирусов поразительно похожа на схему репликации генома ретровирусов. По-видимому, данное сходство имеет под собой и эволюционную основу, так как первичная структура обратных транскриптаз этих вирусов выявляет определенное сходство между собой.

Вторая группа - вирусы с двуцепочечной ДНК,

- репликация осуществляется по схеме ДНК -> ДНК.

- с генома этих вирусов в зараженной клетке ДНК-зависимая РНК-полимераза транскрибирует молекулы мРНК (т.е. (+) РНК),

МРНК (т.е. (+) РНК) принимает участие в синтезе вирусных белков,

Размножение вирусного генома осуществляет фермент ДНК-зависимая ДНК-полимераза:(±) днк → (+)РНК

В одних случаях производством как мРНК, так и ДНК занимаются клеточные ферменты; в других случаях вирусы используют собственные ферменты. Бывает, что те и другие ферменты обслуживают процесс репликации и транскрипции. К этой группе относятся вирусы герпеса, оспы и др.

Вирус герпеса

Оспа – естественный враг СПИДа (нет оспы – есть СПИД). О СПИДе есть информация в Ветхом завете. В нашем геноме есть генетические метки прежних пандемий СПИДа

Вирусные заболевания периодичны: ОСПА → ПРОКАЗА→ЧУМА → †

Третья группа - вирусы с одноцепочечной ДНК, либо с негативной, либо с позитивной полярностью.

- Попав в клетку, вирусный геном сначала превращается в двуцепочечную форму,

Это превращение обеспечивает клеточная ДНК-зависимая ДНК-полимераза:

или (±) ДНК → (+) РНК

Транскрипция и репликация на последующих этапах происходит так же, как и для вирусов, с (±) ДНК-геномом.

Структура вируса: это молекула ДНК в белковой оболочке, называемой капсидом. Однако есть много разных вариантов строения вирусов: от просто покрытой белком ДНК (например, бактериофаг Pf1) до сложных макромолекулярных комплексов, окруженных мембранными структурами, например, вирус оспы. Если у вируса есть мембрана‚ говорят, что он в оболочке, а если мембраны нет, то вирус называют «раздетым». Различают четыре основных вида капсидов: спиральные, икосаэдрические, сложные без оболочки, сложные с оболочкой.(см. презентация)

Спиральные капсиды

- обычно встречаются у нитевидных вирусов.

Образуются путем самосборки асимметричных белковых субъединиц (капсомеров), объединяющихся в трубчатую структуру со спиральной симметрией (например у Pf1).

Субъединицы в большинстве случаев гомогенны, так, что поверхность вириона состоит из множества копий одного и того же белка, хотя под наружним капсидом могут находиться и другие белки.

ДНК в таких вирусах либо вытянута, либо может быть туго скручена в комплексе со специальными связывающими белками.

Икосаэдрические капсиды

Свойственны большинству сферических ДНК-содержащих вирусов

Икосаэдр – это многогранник с двадцатью треугольными гранями, имеющий кубическую симметрию и приблизительно сферическую форму.

Вершины треугольников соединяясь образуют двенадцать вершин икосаэдра;

В местах соединения располагаются обычно пентамерные белковые структуры – пентоны; там же могут находится участки, на которых формируются белковые нити, нередко ассоциированные с вершинами (например у ф Х174 прозрачка 1).

Грани икосаэдра заполнены другими белковыми субъединицами, сгруппированными обычно в гексамерные структуры – гексоны (апример, у аденовируса прозрачка 1).

Количество субъединиц, необходиимое для заполнения граней, определяется размерами вириона в целом, и разные икосаэдрические вирусы содержат поэтому разное число гексонов – обычно при неизменном числе пентонов.

ДНК обычно плотно свернута внутри капсида;

Иногда она связана с белками или полипептидами, способными стабилизировать ее структуру.

Сложные капсиды без оболочки

Типичны для бактериофагов:

Они состоят из частей с разными типами симметрии.

У бактериофага Т2, например, ДНК находится в икосаэдрической головке, а для «узнавания» бактерии и введения в нее ДНК служат трубчатые и фибриллярные структуры (в узнавании участвует также лизоцим, расположенный на дистальном конце хвостового отростка).

Сложные капсиды с оболочкой

Есть только у вирусов эукариотических клеток.

В них ДНК-белковые комплексы окружены одним или несколькими белковыми слоями и наружней мембраной, почти все белковые компоненты которой являются вирусными по своему происхождению, а липидные структуры – клеточными.

Инфицирование – процесс, посредством которого вирус внедряется в клетку-хозяина и «настраивает» ее метаболический аппарат на воспроизведение вирионов.

Зараженные вирусом клетки либо остаются живыми (тогда говорят, что вирус невирулентен),

Либо подвергаются лизису, приводящему к высвобождению вирусных частиц.

Неизменным итогом заражения клеток ДНК-содержащими бактериофагами является лизис.

- ДНК-содержащие вирусы животных вызывают лизис редко; однако клетки могут погибнуть из-за возникших при заражении хромосомных повреждений, вследствии иммунологической реакцииорганизма или просто в результате нарушения вирусом нормальных клеточных функций.

Размножение вируса – четко очерченный цикл, приводящий в конечном счете, после синтеза новых молекул вирусных белков и большого числа копий вирусной ДНК, к формированию зрелых вирусных частиц. У вирусов бактерий весь цикл может завершаться менее чем за час, тогда как у многих вирусов животных он занимает не один день.

Адсорбция вируса на клетке-хозяине – первый этап инфицирования. Она происходит на специфических рецепторных участках (белковых или липидных) клеточной поверхности, которые узнаются особыми выступающими частями вириона и к которым он прочно прикрепляется. У вирусов без оболочки такими частями могут быть белковые отростки (например, у аденовируса и бактериофага Т2), а у вирусов с оболочкой это, как правило белки, погруженные в вирусную мембрану. В процессе адсорбции осуществляются, в частности, такие белок-белковые взаимодействия, результатом которых является инициация стадии проникновения ДНК в клетку.

Проникновение вирусной ДНК в клетку-хозяина у разных вирусов происходит по-разному. ДНК многих бактериофагов, например, бактериофага Т2: белковый стержень сплющивается, подобно телескопической конструкции, и ДНК «впрыскивается» в бактерию. Из вирусов животных ДНК обычно переходит в клетку в результате как бы слияния наружнего слоя вириона с клеточной мембраной. В отличие от ДНК большинства бактериофагов ДНК вирусов животных всегда входят в клетку вместе с непосредственно прилегающими к ней белками; последующее освобождение ДНК от этих белков осуществляется с помощью ферментов.

Транскрипция и репликация генетического материала вируса осуществляется обычно с участием ферментов клетки-хозяина. Сначала вирусная ДНК копируется РНК-полимеразами клетки-хозяина, в результате чего образуется мРНК, которая затем транслируется. На некоторых молекулах вирусной ДНК синтезируются также ее ДНК-копии – с помощью либо клеточной, либо кодируемой вирусом ДНК-полимеразы. Эти ДНК-копии используются в последствии при сборке вирусных частиц. В некоторых случаях, например, у бактериофага Т4 первые же новосинтезированнные молекулы вирусной мРНК транслируются с образованием специальных белков, модифицирующих полимеразы клетки-хозяина таким образом, что те прекращают транскрипцию клеточных генов, не теряя пари этом способности транскрибировать вирусные. В какой части клетки протекают процессы транскрипции и репликации вирусной ДНК эукариотических вирусов: в ядре или цитоплазме? У одних транскрипция и репликация происходит в ядре клетки-хозяина (например, у вируса герпеса), а у других – в цитоплазме, например, у поксивирусов.

Трансляция вирусной мРНК на рибосомах клетки-хозяина приводит к образованию вирусных белков. Некоторые из этих белков используются в последствии для построения капсидов, другие связываются с вирусной ДНК, стабилизируя ее (у многих вирусов животных), третьи хотя и не войдут никогда в состав зрелых вирионов, участвуют в процессе их сборки в качестве ферментов (например, у бактериофага Т2)

Сборка вируса из его компонентов в клетке-хозяине может происходить спонтанно (самосборка), но может зависеть и от участия вспомогательных белков. Вирусная ДНК обычно покрывается слоем белка – капсидом. Капсид, в свою очередь, может заключаться в мембранную структуру, получаемую вирионом обычно от клетки-хозяина: покидая клетку путем отпочковывания от нее, вирусная частица оказывается окруженной плазматической мембраной.

1. Полиомавирусы – обезьяний вирус SV40, вирус полиомы мышей и вирусы человека ВК и JC.

2. Папилломавирусы – 16 вирусов папилломы человека и множество папилломовирусов животных.

3. Аденовирусы – 37 вирусов человека, множество аденовирусов животных (например, 24 вируса обезьян и 9 вирусов крупного рогатого скота).

4. Герповирусы – вирусы простого герпеса человека, цитомегаловирус человека, вирус Эпштейна–Барр и онкогенные вирусы приматов, лошадей, кур, кроликов, лягушек.

5. Вирусы, подобные вирусу гепатита В, – вирус гепатита В человека, гепатита североамериканского сурка, гепатита земляных белок и гепатита уток.

1 - парамиксовирусы; 2 - вирусы гриппа; 3 - коронавирусы; 4 - аренавирусы; 5 - ретровирусы; 6 - реовирусы; 7 - пикорнавирусы; 8 - капицивирусы; 9 - рабдовирусы; 10 - тогавирусы, флавивирусы; 11 - буньявирусы

Геномы почти всех известных РНК-содержащих вирусов - это линейные молекулы, их удобно разделить на 3 группы.

Первая группа - это однонитевые геномы положительной полярности, т.е. с нуклеотидной последовательностью, соответствующей таковой у мРНК.

Такие геномы обозначают как (+) РНК.

Вирусные (+) РНК-геномы кодируют несколько белков, среди которых РНК-зависимая РНК-полимераза (репликаза), способная синтезировать молекулы РНК без участия ДНК.

С помощью этого фермента синтезируются сначала (-) нити РНК фага,

Затем при наличии особого белка, называемого «хозяйским фактором», репликаза осуществляет синтез (+) нити РНК.

На заключительной стадии из накопившихся вирусных белков и (+) РНК формируются вирионы.

Упрощенная схема этого процесса такова:


(+) РНК (-) РНК


Однонитевый (+) РНК-геном характерен для

а) фага Qβ,

б) вирусов табачной мозаики,

Вирус табачной мозаики – пример + одноцепочечного вируса растенийвирус не имеет оболочки, спиральный, содержит 2130 идентичных молекул белка капрсида и одну цепь РНК. РНК располагается в спиральном желобке, обрапзованном белковыми субъединицами, и удерживается многочисленными слабыми связями.

Инфекционный процесс, протекающий по схеме (прозрачка 2 внизу), состоит в проникновении вируса в растительную клетку с последующей быстрой утратой им капсида. Затем в результате трансляции непосредственно +одноцепочечной вирусной РНК рибосомами клетки-хозяина образуются несколько белков, часть которых необходима для репликации вирусного генома.

Репликация осуществляется РНК-репликазой, продуцирующей копии РНК для новых вирионов. Синтез белка капсида происходит только после того как инфицировавшая клетку РНК подвергается некоторой модификации, делающей возможным присоединение рибосом клетки к тому участку РНК, которым кодируется этот белок. Сборка вириона начинается с образования дисков из белка капсида. Два таких белковых диска, располагаясь концентрически, образую похожую на бисквит структуру, которая после связывания с ней РНК приобретает форму спирали. Последующее присоединение молекул белка продолжается до тех пор, пока РНК не будет покрыта полностью. В своей окончательной форме вирион представляет собой цилиндр длиной 300 нм.

3) полиомиелита,

4) клещевого энцефалита.

Вторая группа - это однонитевые геномы с негативной полярностью, т.е. (-) РНК-геномы.

Поскольку (-) РНК не может выполнять функции мРНК, для образования «своих» мРНК вирус внедряет в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии по схеме:

(-) РНК (+) РНК


Этот вирусный фермент (РНК-зависимая РНК-полимераза, синтезированная в предыдущем цикле размножения) упакован в вирионе в удобной для доставки в клетку форме.

Инфекционный процесс начинается с того, что вирусный фермент копирует вирусный геном, образуя (+) РНК, которая выступает в качестве матрицы для синтеза вирусных белков, в том числе РНК-зависимой РНК-полимеразы, которая входит в состав образующихся вирионов

К вирусам с негативным РНК-геномом относятся

а) вирусы гриппа,

в) бешенства,

г) желтой карликовости картофеля и др.

Схема вируса гриппа

Вирус гриппа – это пример вируса с «-»-одноцепочечной РНК. У него есть оболочка и спиральная сердцевина. Сердцевина состоит из восьми сегментов «-» РНК, которые в комплексе с белками образуют спиралевидные структуры. Каждый сегмент кодирует один из белков вируса. В наибольшем количестве вирус содержит белок матрикса, располагающийся на внутренней стороне оболочки и придающий ей стабильность. Все белки оболочки кодируются вирусной РНК, тогда как липиды являются по своему происхождению клеточными (см. ДНК-содержащие вирусы, сборка). Основные белки оболочки – гемагглютинин и нейраминидаза.

Инфекционный процесс протекает по схеме (прозрачка 2 внизу) начинается с прикрепления вируса к поверхности клетки-хозяина через гемагглютинин. Затем происходит слияние оболочки с клеточной мембраной, нуклеопротеиновая сердцевина (нуклеокапсид) входит в клетку, и кодируемая вирусом РНК-зависимая РНК-полимераза синтезирует + цепи мРНК на вирусных «-» цепях, после чего на рибосомах клетки-хозяина продуцируются вирусные белки. Некоторые из этих белков играют важную роль в репликации вирусного генома.

Репликация происходит в ядре, где с помощью той же, но вероятно, модифицированной РНК-полимеразы образуются «-» цепи РНК. После того как в ядро проступают нуклеокапсидные белки, происходит сборка нуклеокапсида. Затем нуклеокапсид проходит цитоплазму, присоединяя по пути белки оболочки, и покидает клетку, отпочковываясь от ее плазматической мембраны. Считается, что в процессе отпочковывания принимает участие нейраминидаза.

Третью группу составляют двунитевые геномы, (±) РНК-геномы.

Известные двунитевые геномы всегда сегментированы (т.е. состоят из нескольких разных молекул).

Сюда относятся реовирусы. Их размножение проходит по варианту, близкому к предыдущему. Вместе с вирусной РНК в клетку попадает и вирусная РНК-зависимая РНК-полимераза, которая обеспечивает синтез молекул (+) РНК. В свою очередь (+) РНК обеспечивает производство вирусных белков на рибосомах хозяйской клетки и служит матрицей для синтеза новых (-) РНК-цепочек вирусной РНК-полимеразой

Цепочки (+) и (-) РНК, комплексируясь друг с другом, образуют двунитевый (±) РНК-геном, который упаковывается в белковую оболочку.

- Реовирусы птиц (от англ. respiratory респираторный, enteric кишечный, orphan сиротский) – это икосаэдрические вирусы без оболочки, белковый капсид которых состоит из двух слоев – наружнего и внутреннего. Внутри капсида находятся 10 или 11 сегментов двухцепочечной РНК.

Реовирусы поражают респираторные и кишечные пути теплокровных животных (человека, обезьян, крупного и мелкого рогатого скота, летучих мышей,

Инфекционный процесс начинается с проникновения в клетку РНК и затем протекает в соответствии со схемой (прозрачка 2 - внизу). После частичного разрушения наружнего капсида ферментами лизосом РНК в образовавшейся таким образом субвирусной частице транскрибируется, ее копии покидают частицу и соединяются с рибосомами. Затем в клетке-хозяине продуцируются белки, необходимые для формирования новых вирусных цастиц.

Репликация РНК вирусов происходит по консервативному механизму. Одна из цепей каждого сегмента РНК служит матрицей для синтеза большого числа новых + цепей. На этих + цепях образуются затем как на матрице – цепи, + и – цепи при этом не расходятся, а остаются вместе в виде двухцепочечных молекул. сборка новых вирусных частиц из новообразованных + и -–сегментови капсидных белков связана каким-то образом с миотическим веретеном клетки-хозяина.

Сюда относятся вирусы, у которых цикл репликации генома можно разбить на две главные реакции: синтез РНК на матрице ДНК и синтез ДНК на матрице РНК.

При этом в состав вирусной частицы в качестве генома может входить либо РНК (ретровирусы (Retroviridae – от REversed TRanscription)), либо ДНК (ретроидные вирусы).

Вирусная частица содержит две молекулы геномной одноцепочечной (+) РНК.

В вирусном геноме закодирован необычный фермент (обратная транскриптаза, или ревертаза), который обладает свойствами как РНК-зависимой, так и ДНК-зависимой ДНК-полимеразы.

Только в 1970 г. американские ученые Г. Темин и Мицутани и независимо от них Д.Балтимор разрешили эту загадку. Они доказали возможность передачи генетической информации от РНК к ДНК. Это открытие перевернуло центральную догму молекулярной биологии о том, что генетическая информация может переноситься только в направлении ДНК–РНК–белок. Пять лет понадобилось Г. Темину для обнаружения фермента, осуществляющего перенос информации от РНК к ДНК, – РНК-зависимой ДНК-полимеразы. Этот фермент получил название обратной транскриптазы. Г. Темину удалось не только получить фрагменты ДНК, комплементарные заданной цепи РНК, но и доказать что ДНК-копии могут встраиваться в ДНК клеток и передаваться потомству.

Этот фермент попадает в заражаемую клетку вместе с вирусной РНК и обеспечивает синтез ее ДНК-копии сначала в одноцепочечной форме [(-) ДНК], а затем в двуцепочечной [(±) ДНК]:

Вирусный геном в форме нормального дуплекса ДНК (так называемая провирусная ДНК) встраивается в хромосому клетки хозяина.

В результате двуцепочечная ДНК вируса представляет собой в сущности дополнительный набор генов клетки, который реплицируется вместе с ДНК хозяина при делении.

Для образования новых ретровирусных частиц провирусные гены (гены вируса в хромосомах хозяина) транскрибируются в ядре клетки транскрипционным аппаратом хозяина в (+) РНК-транскрипты.

Одни из них становятся геномом нового «потомства» ретровирусов, а другие подвергаются процессингу в мРНК и используются для трансляции белков, необходимых для сборки вирусных частиц

В эту группу входят

а) вирус иммунодефицита человека (ВИЧ)

Информация о СПИДе есть в Ветхом Завете

В нашем ганоме есть генетические метки прежних пандемий СПИДа

Семейство Пикорнавирусы (Picornaviridae) состоит из 8 родов:

Энтеровирусы (полиомиелит)

Риновирусы (ОРВИ)

Афтовирусы (ящур)

Гепатовирусы (гепатит А)

Это семейство относится к безоболочечным вирусам, содержащих однонитевую плюс РНК. Диаметр вируса около 30нм, вирион состоит из икосаэдрического капсида, окружающего однонитевую плюс РНК с протеином VPg. Капсид состоит из 12 пятиугольников (пентамеров), каждый из которых в свою очередь состоит из 5 белковых субъединиц-протомеров: VP1, VP2, VP3, VP4.

Семейство Реовирусы (Reoviridae) содержит 4 рода:

Ортовирусы (желудочно-кишечные и респираторные инфекции)

Арбовирусы (арбовирусные инфекции: вирус Кемерово переносится клещами, вирус синего языка овец переносится мокрицами)

Колтивирусы (вирус колорадской клещевой лихорадки)

Ротавирусы (диареи)

Вирион реовирусов имеет сферическую форму (диаметр 70-85нм), двухслойный капсид икосаэдрического типа, оболочки нет. Геном представлен двунитевой фрагментированной (10-12 сегментов) линейной РНК. Внутренний капсид и геномная РНК составляют сердцевину вириона. Внутренний капсид реовирусов содержит систему транскрипции: белки лямбда -1, лямбда -3, мю -2. От сердцевины отходят шипы, представленные белком лямбда – 2. У ротавирусов внутренний капсид включает белки VP1, VP2, VP3, VP6. Наружный капсид реовирусов состоит из белков сигма – 1, сигма – 3, мю – 1с, а также белков лямбда -2, выступаюших в виде шипов. Белок сигма -1 является гемагглютинином и прикрепительным белком, белок мю -1с обладает способностью заражать клетки кишечника и впоследствии поражать ЦНС.

Семейство Буньявирусы (Bunyaviridae) включает 5 родов:

Буньявирусы (калифорнийский энцефалит, энцефалит Джеймстаун- каньон, энцефалит Ла-Кросс, лихорадки Тягиня, Инко, Гуароа – переносчиком вирусов являются комары, заболеваемость эндемична в 20 штатах США)

Флебовирусы (москитная лихорадка или лихорадка паппатачи). Резервуаром и переносчиком вируса являются самки москитов. Заболевание встречается в Европе (Средиземноморье), Азии (Иран, Пакистан), в Северной Африке, Италии, Португалии. Вспышки имели место в Закавказье, Крыму, Молдавии и Средней Азии.

Нейровирусы (геморрагическая лихорадка Крым-Конго, основным резервуаром вируса в природе являются многие виды пастбищных клещей, заражение происходит через присасывание клещей. В России это заболевание встречается на территории Краснодарского, Ставропольского краев, Астраханской, Волгоградской и Ростовской областей, республик Дагестан, Калмыкия и Карачаево-Черкесии.

Хантавирусы (ГЛПС-геморрагическая лихорадка с почечным синдромом)

Тосповирусы непатогенны для человека и поражают растения

Вирионы имеют овальную или сферическую форму, диаметр 80-120нм. Это сложные РНК-геномные вирусы, содержащие три внутренних нуклеокапсида со спиральным типом симметрии. Каждый нуклеокапсид состоит из нуклеокапсидного белка N, одноцепочечной минус РНК и фермента транскриптазы. Три сегмента РНК, связанные с нуклеокапсидом, обозначают по размерам: L (long) – большой, M (medium) – средний, S (short) – малый. Сердцевина вириона окружена липопротеидной оболочкой, на поверхности которой находятся шипы – гликопротеины G1 и G2, которые кодируются М-сегментом РНК. ш80-

Семейство Тогавирусы (Togaviridae) состоит из 4 родов, 2 из которых играют роль в патологии человека:

Альфавирус (вирусы, передаваемые членистоногими, вызывают у человека заболевания, сопровождающиеся лихорадкой, высыпаниями на коже, развитием энцефалита и артрита, в Приморском крае – вирус лихорадки леса Семлики)

Рубивирус (вирус краснухи)

Их геном состоит из линейной однонитчатой плюс-РНК, окруженной капсидом (С-белок) с кубическим типом симметрии и состоящим из 32 капсомеров. Нуклеокапсид окружен наружной двухслойной липопротеидной оболочкой, на поверхности которой располагаются гликопротеины Е1, Е2, Е3, пронизывающие липидный слой. Диаметр вирионов- от 65 до 70 нм.

Семейство Флавивирусы (Flaviviridae) происходит от латинского flavus – желтый, по названию заболевания желтая лихорадка. Патогенные для человека входят в состав 2 родов:

Флавивирус (желтая лихорадка, вирус клещевого энцефалита, вирус омской геморрагической лихорадки, вирус лихорадки денге, вирус японского энцефалита, вирус лихорадки Западного Нила)

Гепацивирус (вирус гепатита С)

Это сложные РНК геномные вирусы сферической формы, их диаметр 40-60 нм. Геном состоит из линейной однонитчатой плюс-нитевой РНК, окруженной капсидом с кубическим типом симметрии. В состав нуклеокапсида входит один белок – V2. Нуклеокапсид окружен суперкапсидом, на поверхности которого содержится гликопротеин V3. На внутренней стороне суперкапсида расположен структурный белок V1.

Семейство Ортомиксовирусы (Orthomyxoviridae) включает в себя род:

Инфлюэнцавирус (вирус гриппа, который включает 3 серотипа: А, В,С)

Диаметр вирусной частицы 80-120 нм. Вирион имеет сферическую форму, В центре вириона расположен нуклеокапсид, имеющий спиральный тип симметрии. Геном вирусов гриппа представляет собой спираль однонитчатой сегментированной минус-нитевой РНК. Капсид состоит в основном из белка – нуклеопротеина (NР), а также белков полимеразного комплекса (Р). Нуклеокапсид окружен слоем матриксных и мембранных белков (М), которые участвуют в сборке вирусной частицы. Поверх этих структур располагается суперкапсид – наружная липопротеиновая оболочка, которая несет на своей поверхности шипики. Шипики образованы двумя сложными белками-гликопротеинами: гемагглютинином (Н) и нейраминидазой (N).

Семейство Парамиксовирусы (Paramyxoviridae), которое включает 2 подсемейства:

Подсемейство Парамиксовирусы:

Морбилливирус (вирус кори)

Респировирус (вирус парагриппа)

Рубулавирус (вирус паротита, парагриппа)

Подсемейство Пневмовирусы:

Пневмовирус (респираторно-синцитиальный вирус (РС))

Метапневмовирус (РС-вирус)

Вирион парамиксовирусов имеет сферическую форму, диаметр 150-300 нм, окружен оболочкой с гликопротеиновыми шипами. Под оболочкой находится спиральный нуклеокапсид, состоящий из нефрагментированной линейной однонитевой минус-РНК, связанной белками: нуклеопротеином (NР), полимеразой-фосфопротеином (Р) и большим (L) белком. Нуклеокапсид ассоциирован с матриксным (М) белком, расположенным под оболочкой вириона. Оболочка вириона содержит шипы – два гликопротеина: белок слияния (F), прикрепительный белок гемагглютинин-нейраминидаза (HN), гемагглютинин (Н) или (G) белок.

Семейство Рабдовирусы (Rhabdoviridae) включает около 80 родов, вызывают заболевания животных и растений.

Лассавирус (вирус бешенства)

Везикуловирус (вирус везикулярного стоматита)

Вирионы имеют форму цилиндра с полукруглым и плоским концами (форма пули), размер вирионов 130х300х60х80. Состоят из двухслойной липопротеиновой оболочки и нуклеокапсида спиральной симметрии. Оболочка изнутри выстлана М-белком, а снаружи от нее отхоят шипы гликопротеина G. РНП нуклеокапсида состоит из геномной РНК и белков: N – белок, укрывающий как чехол РНК, L –белок и NS – белок, являющиеся транскриптазой вируса. Геном рабдовирусов представлен однонитевой нефрагментированной линейной минус-РНК.

Семейство Филовирусы (Filoviridae) содержит два рода:

Род марбургподобных вирусов (африканская геморрагическая лихорадка Марбург)

Род эболаподобных вирусов (африканская геморрагическая лихорадка Эбола)

Вирусы имеют вид длинных филаментов (80-1000нм) с оболочкой и однонитевой минус-РНК, заключенной в капсид. Содержит полимеразу. Симметрия капсида спиральная. На оболочке имеются шипы (спикулы).

Семейство Коронавирусы (Coronaviridae), включает в себя 1 род, объединяющий более 10 видов, вызывающих заболевания у человека и животных.

Коронавирус (вызывает поражения респираторных органов, в т.ч. SARS, ЖКТ, нервной системы)

Вирионы округлой формы размером 80-220нм. Сердцевина вириона представлена спиральным нуклеокапсидом, содержащим однонитевую плюс-РНК. Нуклеокапсид окружен липидной оболочкой, покрытой снаружи булавовидными выступами – пепломерами. Пепломеры придают вирусной частице вид солнечной короны. В оболочку вириона встроены гликопротеины Е1 и Е2, которые отвечают за адсорбцию вируса на клетке и проникновение в клетку хозяина.

Семейство Ретровирусы (Retroviridae), которое влючает 7 родов:

Альфаретровирус (вирусы лейкоза, саркомы птиц, саркомы Рауса кур)

Бетаретровирус (вирус рака молочных желез мышей, эндогенный ретровирус человека, вирус обезьян)

Гаммаретровирус (вирусы саркомы и лейкемии мышей, кошек, приматов)

Дельтаретровирус (вирус лейкемии КРС, лимфотропные вирусы Т-клеток человека)

Эпсилоретровирус (вирус саркомы кожи)

Лентивирус (вирус иммунодефицита человека)

Спумавирус (пенящие вирусы человека, обезьян, бычий синцитиальный вирус)

Ретровирусы имеют сферическую форму, размер 80-130нм. Вирион имеет оболочку и нуклеокапсидную сердцевину. Капсид икосаэдрический. Обратная транскриптаза связана с геномом однонитевой плюс- РНК. Вирусы содержат протеины: группового антигена (gag), полимеразный протеин (pol) и белки оболочки (env). Известно около 30 онкоантигенов.

Семейство Аренавирусы (Arenaviridae) включает род:

Аренавирус (вирусы лимфоцитарного хориоменингита, Ласа, Хунин, Мачупо, Гуанарито, вызывающие тяжелые геморрагические лихорадки)

Вирион имеет сферическую или овальную форму, диаметр около 120нм. Снаружи он окружен оболочкой с булавовидными гликопротеиновыми шипами GP1, GP2. Под оболочкой расположены 12-15 клеточных рибосом, капсид спиральный. Геном представлен двумя сегментами (L, S) однонитевой минус-РНК, кодируется 5 белков:L, Z, N, G.

Семейство Калицивирусы (Caliciviridae) содержит вирусы гастроэнтерита группы Норволк и вирус везикулярной экзантемы свиней.

Вирион безоболочечный, имеет икосаэдрический капсид с 32 чашеобразными углублениями (ямками). Форма сферическая, диаметр 27-38нм. На поверхности вириона различают 10 выступов, сформированных краями чашеобразных углублений. Геном – линейная, однонитевая плюс-РНК.