Суперкомпьютеры сегодня. Современные суперкомпьютеры

Суперкомпьютер Titan

На Марс люди так и не летают, рак еще не вылечили, от нефтяной зависимости не избавились. И все же существуют области, где человечество достигло невероятного прогресса за последние десятилетия. Вычислительная мощь компьютеров – как раз одна из них.

Два раза в год специалисты из Национальной лаборатории имени Лоуренса в Беркли и Университета Теннесси публикуют Top-500, в котором предлагают список самых производительных суперкомпьютеров мира.

Немного забегая вперед, предлагаем вам заранее попробовать на вкус эти цифры: производительность представителей первого десятка топа измеряется десятками квадриллионов флопс. Для сравнения: ЭНИАК, первый компьютер в истории, обладал мощностью в 500 флопс; сейчас средний персональный компьютер имеет мощность в сотни гигафлопс (миллиардов флопс), iPhone 6 обладает производительностью приблизительно в 172 гигафлопса, а игровая приставка PS4 – в 1,84 терафлопса (триллиона флопс).

Вооружившись последним «Топ-500» от ноября 2014 года, редакция Naked Science решила разобраться, что из себя представляют 10 самых мощных суперкомпьютеров мира, и для решения каких задач требуется столь грандиозная вычислительная мощь.

  • Местоположение: США
  • Производительность: 3,57 петафлопс
  • Теоретический максимум производительности: 6,13 петафлопс
  • Мощность: 1,4 МВт

Как и практически все современные суперкомпьютеры, включая каждый из представленных в данной статье, CS-Storm состоит из множества процессоров, объединенных в единую вычислительную сеть по принципу массово-параллельной архитектуры. В реальности эта система представляет собой множество стоек («шкафов») с электроникой (узлами, состоящими из многоядерных процессоров), которые образуют целые коридоры.

Cray CS-Storm – это целая серия суперкомпьютерных кластеров, однако один из них все же выделяется на фоне остальных. В частности, это загадочный CS-Storm, который использует правительство США для неизвестных целей и в неизвестном месте.

Известно лишь то, что американские чиновники купили крайне эффективный с точки зрения потребления энергии (2386 мегафлопс на 1 Ватт) CS-Storm с общим количеством ядер почти в 79 тысяч у американской компании Cray.

На сайте производителя, впрочем, сказано, что кластеры CS-Storm подходят для высокопроизводительных вычислений в области кибербезопасности, геопространственной разведки, распознавания образов, обработки сейсмических данных, рендеринга и машинного обучения. Где-то в этом ряду, вероятно, и обосновалось применение правительственного CS-Storm.

CRAY CS-STORM

9. Vulcan – Blue Gene/Q

  • Местоположение: США
  • Производительность: 4,29 петафлопс
  • Теоретический максимум производительности: 5,03 петафлопс
  • Мощность: 1,9 МВт

«Вулкан» разработан американской компанией IBM, относится к семейству Blue Gene и находится в Ливерморской национальной лаборатории имени Э. Лоуренса. Принадлежащий Министерству энергетики США суперкомпьютер состоит из 24 стоек. Функционировать кластер начал в 2013 году.

В отличие уже упомянутого CS-Storm, сфера применения «Вулкана» хорошо известна – это различные научные исследования, в том числе в области энергетики, вроде моделирования природных явлений и анализа большого количества данных.

Различные научные группы и компании могут получить доступ к суперкомпьютеру по заявке, которую нужно отправить в Центр инноваций в области высокопроизводительных вычислений (HPC Innovation Centre), базирующийся в той же Ливерморской национальной лаборатории.

Суперкомпьютер Vulcan

8. Juqueen – Blue Gene/Q

  • Местоположение: Германия
  • Производительность: 5 петафлопс
  • Теоретический максимум производительности: 5,87 петафлопс
  • Мощность: 2,3 МВт

С момента запуска в 2012 году Juqueen является вторым по мощности суперкомпьютером в Европе и первым – в Германии. Как и «Вулкан», этот суперкомпьютерный кластер разработан компанией IBM в рамках проекта Blue Gene, причем относится к тому же поколению Q.

Находится суперкомпьютер в одном из крупнейших исследовательских центров Европы в Юлихе. Используется соответственно – для высокопроизводительных вычислений в различных научных исследованиях.

Суперкомпьютер Juqueen

7. Stampede – PowerEdge C8220

  • Местоположение: США
  • Производительность: 5,16 петафлопс
  • Теоретический максимум производительности: 8,52 петафлопс
  • Мощность: 4,5 МВт

Находящийся в Техасе Stampede является единственным в первой десятке Top-500 кластером, который был разработан американской компанией Dell. Суперкомпьютер состоит из 160 стоек.

Этот суперкомпьютер является мощнейшим в мире среди тех, которые применяются исключительно в исследовательских целях. Доступ к мощностям Stampede открыт научным группам. Используется кластер в самом широком спектре научных областей – от точнейшей томографии человеческого мозга и предсказания землетрясений до выявления паттернов в музыке и языковых конструкциях.

Суперкомпьютер Stampede

6. Piz Daint – Cray XC30

  • Местоположение: Швейцария
  • Производительность: 6,27 петафлопс
  • Теоретический максимум производительности: 7,78 петафлопс
  • Мощность: 2,3 МВт

Швейцарский национальный суперкомпьютерный центр (CSCS) может похвастаться мощнейшим суперкомпьютером в Европе. Piz Daint, названный так в честь альпийской горы, был разработан компанией Cray и принадлежит к семейству XC30, в рамках которого является наиболее производительным.

Piz Daint применяется для различных исследовательских целей, вроде компьютерного моделирования в области физики высоких энергий.

Суперкомпьютер Piz Daint

5. Mira – Blue Gene/Q

  • Местоположение: США
  • Производительность: 8,56 петафлопс
  • Теоретический максимум производительности: 10,06 петафлопс
  • Мощность: 3,9 МВт

Суперкомпьютер «Мира» был разработан компанией IBM в рамках проекта Blue Gene в 2012 году. Отделение высокопроизводительных вычислений Аргонской национальной лаборатории, в котором располагается кластер, было создано при помощи государственного финансирования. Считается, что рост интереса к суперкомпьютерным технологиям со стороны Вашингтона в конце 2000-х и начале 2010-х годов объясняется соперничеством в этой области с Китаем.

Расположенный на 48 стойках Mira используется в научных целях. К примеру, суперкомпьютер применяется для климатического и сейсмического моделирования, что позволяет получать более точные данные по предсказанию землетрясений и изменений климата.

Суперкомпьютер Mira

4. K Computer

  • Местоположение: Япония
  • Производительность: 10,51 петафлопс
  • Теоретический максимум производительности: 11,28 петафлопс
  • Мощность: 12,6 МВт

Разработанный компанией Fujitsu и расположенный в Институте физико-химических исследований в городе Кобе, K Сomputer является единственным японским суперкомпьютером, присутствующим в первой десятке Top-500.

В свое время (июнь 2011) этот кластер занял в рейтинге первую позицию, на один год став самым производительным компьютером в мире. А в ноябре 2011 года K Computer стал первым в истории, которому удалось достичь мощности выше 10 петафлопс.

Суперкомпьютер используется в ряде исследовательских задач. К примеру, для прогнозирования природных бедствий (что актуально для Японии из-за повышенной сейсмической активности региона и высокой уязвимости страны в случае цунами) и компьютерного моделирования в области медицины.

Суперкомпьютер K

3. Sequoia – Blue Gene/Q

  • Местоположение: США
  • Производительность: 17,17 петафлопс
  • Теоретический максимум производительности: 20,13 петафлопс
  • Мощность: 7,8 МВт

Мощнейший из четверки суперкомпьютеров семейства Blue Gene/Q, попавших в первую десятку рейтинга, расположен в США в Ливерморской национальной лаборатории. IBM разработали Sequoia для Национальной администрации ядерной безопасности (NNSA), которой требовался высокопроизводительный компьютер для вполне конкретной цели – моделирования ядерных взрывов.

Стоит упомянуть, что реальные ядерные испытания запрещены еще с 1963 года, и компьютерная симуляция является одним из наиболее приемлемых вариантов для продолжения исследований в этой области.

Однако мощности суперкомпьютера использовались для решения и других, куда более благородных задач. К примеру, кластеру удалось поставить рекорды производительности в космологическом моделировании, а также при создании электрофизиологической модели человеческого сердца.

Суперкомпьютер Sequoia

2. Titan – Cray XK7

  • Местоположение: США
  • Производительность: 17,59 петафлопс
  • Теоретический максимум производительности: 27,11 петафлопс
  • Мощность: 8,2 МВт

Наиболее производительный из когда-либо созданных на Западе суперкомпьютеров, а также самый мощный компьютерный кластер под маркой компании Cray, находится в США в Национальной лаборатории Оук-Ридж. Несмотря на то, что находящийся в распоряжении американского Министерства энергетики суперкомпьютер официально доступен для любых научных исследований, в октябре 2012 года, когда Titan был запущен, количество заявок превысило всякие пределы.

Из-за этого в Оукриджской лаборатории была созвана специальная комиссия, которая из 50 заявок отобрала лишь 6 наиболее «передовых» проектов. Среди них, к примеру, моделирование поведения нейтронов в самом сердце ядерного реактора, а также прогнозирование глобальных климатических изменений на ближайшие 1-5 лет.

Несмотря на свою вычислительную мощь и впечатляющие габариты (404 квадратных метра), Titan недолго продержался на пьедестале. Уже через полгода после триумфа в ноябре 2012 года гордость американцев в области высокопроизводительных вычислений неожиданно потеснил выходец с Востока, беспрецедентно обогнав предыдущих лидеров рейтинга.

Суперкомпьютер Titan

1. Tianhe-2 / Млечный путь-2

  • Местоположение: Китай
  • Производительность: 33,86 петафлопс
  • Теоретический максимум производительности: 54,9 петафлопс
  • Мощность: 17,6 МВт

С момента своего первого запуска «Тяньхэ-2», или «Млечный-путь-2», вот уже около двух лет является лидером Top-500. Этот монстр почти в два раза превосходит по производительности №2 в рейтинге – суперкомпьютер TITAN.

Разработанный Оборонным научно-техническим университетом Народно-освободительной армии КНР и компанией Inspur, «Тяньхэ-2» состоит из 16 тысяч узлов с общим количеством ядер в 3,12 миллиона. Оперативная память всей это колоссальной конструкции, занимающей 720 квадратных метров, составляет 1,4 петабайт, а запоминающего устройства – 12,4 петабайт.

«Млечный путь-2» был сконструирован по инициативе китайского правительства, поэтому нет ничего удивительного в том, что его беспрецедентная мощь служит, судя по всему, нуждам государства. Официально было заявлено, что суперкомпьютер занимается различными моделированиями, анализом огромного количества данных, а также обеспечением государственной безопасности Китая.

Учитывая секретность, свойственную военным проектам КНР, остается лишь догадываться, какое именно применение время от времени получает «Млечный путь-2» в руках китайской армии.

Суперкомпьютер Tianhe-2

На Марс люди так и не летают, рак еще не вылечили, от нефтяной зависимости не избавились. И все же существуют области, где человечество достигло невероятного прогресса за последние десятилетия. Вычислительная мощь компьютеров – как раз одна из них.

Два раза в год специалисты из Национальной лаборатории имени Лоуренса в Беркли и Университета Теннесси публикуют Top-500, в котором предлагают список самых производительных суперкомпьютеров мира.

Немного забегая вперед, предлагаем вам заранее попробовать на вкус эти цифры: производительность представителей первого десятка топа измеряется десятками квадриллионов флопс. Для сравнения: ЭНИАК, первый компьютер в истории, обладал мощностью в 500 флопс; сейчас средний персональный компьютер имеет мощность в сотни гигафлопс (миллиардов флопс), iPhone 6 обладает производительностью приблизительно в 172 гигафлопса, а игровая приставка PS4 – в 1,84 терафлопса (триллиона флопс).

Вооружившись последним «Топ-500» от ноября 2014 года, редакция Naked Science решила разобраться, что из себя представляют 10 самых мощных суперкомпьютеров мира, и для решения каких задач требуется столь грандиозная вычислительная мощь.

10. Cray CS-Storm

  • Местоположение: США
  • Производительность: 3,57 петафлопс
  • Теоретический максимум производительности: 6,13 петафлопс
  • Мощность: 1,4 МВт

Как и практически все современные суперкомпьютеры, включая каждый из представленных в данной статье, CS-Storm состоит из множества процессоров, объединенных в единую вычислительную сеть по принципу массово-параллельной архитектуры. В реальности эта система представляет собой множество стоек («шкафов») с электроникой (узлами, состоящими из многоядерных процессоров), которые образуют целые коридоры.

Cray CS-Storm – это целая серия суперкомпьютерных кластеров, однако один из них все же выделяется на фоне остальных. В частности, это загадочный CS-Storm, который использует правительство США для неизвестных целей и в неизвестном месте.

Известно лишь то, что американские чиновники купили крайне эффективный с точки зрения потребления энергии (2386 мегафлопс на 1 Ватт) CS-Storm с общим количеством ядер почти в 79 тысяч у американской компании Cray.

На сайте производителя, впрочем, сказано, что кластеры CS-Storm подходят для высокопроизводительных вычислений в области кибербезопасности, геопространственной разведки, распознавания образов, обработки сейсмических данных, рендеринга и машинного обучения. Где-то в этом ряду, вероятно, и обосновалось применение правительственного CS-Storm.

CRAY CS-STORM

9. Vulcan – Blue Gene/Q

  • Местоположение: США
  • Производительность: 4,29 петафлопс
  • Теоретический максимум производительности: 5,03 петафлопс
  • Мощность: 1,9 МВт

«Вулкан» разработан американской компанией IBM, относится к семейству Blue Gene и находится в Ливерморской национальной лаборатории имени Э. Лоуренса. Принадлежащий Министерству энергетики США суперкомпьютер состоит из 24 стоек. Функционировать кластер начал в 2013 году.

В отличие уже упомянутого CS-Storm, сфера применения «Вулкана» хорошо известна – это различные научные исследования, в том числе в области энергетики, вроде моделирования природных явлений и анализа большого количества данных.

Различные научные группы и компании могут получить доступ к суперкомпьютеру по заявке, которую нужно отправить в Центр инноваций в области высокопроизводительных вычислений (HPC Innovation Centre), базирующийся в той же Ливерморской национальной лаборатории.

Суперкомпьютер Vulcan

8. Juqueen – Blue Gene/Q

  • Местоположение: Германия
  • Производительность: 5 петафлопс
  • Теоретический максимум производительности: 5,87 петафлопс
  • Мощность: 2,3 МВт

С момента запуска в 2012 году Juqueen является вторым по мощности суперкомпьютером в Европе и первым – в Германии. Как и «Вулкан», этот суперкомпьютерный кластер разработан компанией IBM в рамках проекта Blue Gene, причем относится к тому же поколению Q.

Находится суперкомпьютер в одном из крупнейших исследовательских центров Европы в Юлихе. Используется соответственно – для высокопроизводительных вычислений в различных научных исследованиях.

Суперкомпьютер Juqueen

7. Stampede – PowerEdge C8220

  • Местоположение: США
  • Производительность: 5,16 петафлопс
  • Теоретический максимум производительности: 8,52 петафлопс
  • Мощность: 4,5 МВт

Находящийся в Техасе Stampede является единственным в первой десятке Top-500 кластером, который был разработан американской компанией Dell. Суперкомпьютер состоит из 160 стоек.

Этот суперкомпьютер является мощнейшим в мире среди тех, которые применяются исключительно в исследовательских целях. Доступ к мощностям Stampede открыт научным группам. Используется кластер в самом широком спектре научных областей – от точнейшей томографии человеческого мозга и предсказания землетрясений до выявления паттернов в музыке и языковых конструкциях.

Суперкомпьютер Stampede

6. Piz Daint – Cray XC30

  • Местоположение: Швейцария
  • Производительность: 6,27 петафлопс
  • Теоретический максимум производительности: 7,78 петафлопс
  • Мощность: 2,3 МВт

Швейцарский национальный суперкомпьютерный центр (CSCS) может похвастаться мощнейшим суперкомпьютером в Европе. Piz Daint, названный так в честь альпийской горы, был разработан компанией Cray и принадлежит к семейству XC30, в рамках которого является наиболее производительным.

Piz Daint применяется для различных исследовательских целей, вроде компьютерного моделирования в области физики высоких энергий.

Суперкомпьютер Piz Daint

5. Mira – Blue Gene/Q

  • Местоположение: США
  • Производительность: 8,56 петафлопс
  • Теоретический максимум производительности: 10,06 петафлопс
  • Мощность: 3,9 МВт

Суперкомпьютер «Мира» был разработан компанией IBM в рамках проекта Blue Gene в 2012 году. Отделение высокопроизводительных вычислений Аргонской национальной лаборатории, в котором располагается кластер, было создано при помощи государственного финансирования. Считается, что рост интереса к суперкомпьютерным технологиям со стороны Вашингтона в конце 2000-х и начале 2010-х годов объясняется соперничеством в этой области с Китаем.

Расположенный на 48 стойках Mira используется в научных целях. К примеру, суперкомпьютер применяется для климатического и сейсмического моделирования, что позволяет получать более точные данные по предсказанию землетрясений и изменений климата.

Суперкомпьютер Mira

4. K Computer

  • Местоположение: Япония
  • Производительность: 10,51 петафлопс
  • Теоретический максимум производительности: 11,28 петафлопс
  • Мощность: 12,6 МВт

Разработанный компанией Fujitsu и расположенный в Институте физико-химических исследований в городе Кобе, K Сomputer является единственным японским суперкомпьютером, присутствующим в первой десятке Top-500.

В свое время (июнь 2011) этот кластер занял в рейтинге первую позицию, на один год став самым производительным компьютером в мире. А в ноябре 2011 года K Computer стал первым в истории, которому удалось достичь мощности выше 10 петафлопс.

Суперкомпьютер используется в ряде исследовательских задач. К примеру, для прогнозирования природных бедствий (что актуально для Японии из-за повышенной сейсмической активности региона и высокой уязвимости страны в случае цунами) и компьютерного моделирования в области медицины.

Суперкомпьютер K

3. Sequoia – Blue Gene/Q

  • Местоположение: США
  • Производительность: 17,17 петафлопс
  • Теоретический максимум производительности: 20,13 петафлопс
  • Мощность: 7,8 МВт

Мощнейший из четверки суперкомпьютеров семейства Blue Gene/Q, попавших в первую десятку рейтинга, расположен в США в Ливерморской национальной лаборатории. IBM разработали Sequoia для Национальной администрации ядерной безопасности (NNSA), которой требовался высокопроизводительный компьютер для вполне конкретной цели – моделирования ядерных взрывов.

Стоит упомянуть, что реальные ядерные испытания запрещены еще с 1963 года, и компьютерная симуляция является одним из наиболее приемлемых вариантов для продолжения исследований в этой области.

Однако мощности суперкомпьютера использовались для решения и других, куда более благородных задач. К примеру, кластеру удалось поставить рекорды производительности в космологическом моделировании, а также при создании электрофизиологической модели человеческого сердца.

Суперкомпьютер Sequoia

2. Titan – Cray XK7

  • Местоположение: США
  • Производительность: 17,59 петафлопс
  • Теоретический максимум производительности: 27,11 петафлопс
  • Мощность: 8,2 МВт

Наиболее производительный из когда-либо созданных на Западе суперкомпьютеров, а также самый мощный компьютерный кластер под маркой компании Cray, находится в США в Национальной лаборатории Оук-Ридж. Несмотря на то, что находящийся в распоряжении американского Министерства энергетики суперкомпьютер официально доступен для любых научных исследований, в октябре 2012 года, когда Titan был запущен, количество заявок превысило всякие пределы.

Из-за этого в Оукриджской лаборатории была созвана специальная комиссия, которая из 50 заявок отобрала лишь 6 наиболее «передовых» проектов. Среди них, к примеру, моделирование поведения нейтронов в самом сердце ядерного реактора, а также прогнозирование глобальных климатических изменений на ближайшие 1-5 лет.

Несмотря на свою вычислительную мощь и впечатляющие габариты (404 квадратных метра), Titan недолго продержался на пьедестале. Уже через полгода после триумфа в ноябре 2012 года гордость американцев в области высокопроизводительных вычислений неожиданно потеснил выходец с Востока, беспрецедентно обогнав предыдущих лидеров рейтинга.

Суперкомпьютер Titan

1. Tianhe-2 / Млечный путь-2

  • Местоположение: Китай
  • Производительность: 33,86 петафлопс
  • Теоретический максимум производительности: 54,9 петафлопс
  • Мощность: 17,6 МВт

С момента своего первого запуска «Тяньхэ-2», или «Млечный-путь-2», вот уже около двух лет является лидером Top-500. Этот монстр почти в два раза превосходит по производительности №2 в рейтинге – суперкомпьютер TITAN.

Разработанный Оборонным научно-техническим университетом Народно-освободительной армии КНР и компанией Inspur, «Тяньхэ-2» состоит из 16 тысяч узлов с общим количеством ядер в 3,12 миллиона. Оперативная память всей это колоссальной конструкции, занимающей 720 квадратных метров, составляет 1,4 петабайт, а запоминающего устройства – 12,4 петабайт.

«Млечный путь-2» был сконструирован по инициативе китайского правительства, поэтому нет ничего удивительного в том, что его беспрецедентная мощь служит, судя по всему, нуждам государства. Официально было заявлено, что суперкомпьютер занимается различными моделированиями, анализом огромного количества данных, а также обеспечением государственной безопасности Китая.

Учитывая секретность, свойственную военным проектам КНР, остается лишь догадываться, какое именно применение время от времени получает «Млечный путь-2» в руках китайской армии.

Суперкомпьютер Tianhe-2

У большинства людей слово "компьютер" ассоциируется в первую очередь с персоналкой, которую можно увидеть сегодня не только в любом офисе, но и во многих квартирах. Однако не стоит забывать, что ПК - это лишь часть компьютерного мира, где существуют гораздо более мощные и сложные вычислительные системы, недоступные рядовому пользователю.


Многие, наверно, слышали о компьютере по имени Deep Blue, который в 1997 году обыграл самого Гарри Каспарова. Интуитивно понятно, что такая машина не могла быть простой персоналкой. Другой пример - отечественный компьютер МВС-1000 производительностью 200 миллиардов операций в секунду, недавно установленный в Межведомственном суперкомпьютерном центре в Москве. Кроме того, в прессе время от времени появляются сообщения о нелегальных поставках в Россию вычислительной техники, попадающей под эмбарго американского правительства.

Подобные компьютеры для многих так и остаются тайной за семью печатями, окруженной ореолом ассоциаций с чем-то очень большим: огромные размеры, сверхсложные задачи, крупные фирмы и компании, невероятные скорости работы и т.д. Одним словом, супер-ЭВМ, что-то далекое и недоступное. Между тем, если вам хотя бы раз приходилось пользоваться услугами серьезных поисковых систем в Интернете, вы, сами того не подозревая, имели дело с одним из приложений суперкомпьютерных технологий.

Что такое суперкомпьютер?
Считается, что супер-ЭВМ - это компьютеры с максимальной производительностью. Однако быстрое развитие компьютерной индустрии делает это понятие весьма и весьма относительным: то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает. Производительность первых супер-ЭВМ начала 70-х годов была сравнима с производительностью современных ПК на базе традиционных процессоров Pentium. По сегодняшним меркам ни те, ни другие к суперкомпьютерам, конечно же, не относятся.

В любом компьютере все основные параметры взаимосвязаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. Отсюда простой вывод: супер-ЭВМ - это компьютер, имеющий не только максимальную производительность, но и максимальный объем оперативной и дисковой памяти в совокупности со специализированным программным обеспечением, с помощью которого этим монстром можно эффективно пользоваться.

Суперкомпьютерам не раз пытались давать универсальные определения - иногда они получались серьезными, иногда ироничными. Например, как-то предлагалось считать суперкомпьютером машину, вес которой превышает одну тонну. Несколько лет назад был предложен и такой вариант: суперкомпьютер - это устройство, сводящее проблему вычислений к проблеме ввода/вывода. В самом деле, задачи, которые раньше вычислялись очень долго, на супер-ЭВМ выполняются мгновенно, и почти все время теперь уходит на более медленные процедуры ввода и вывода данных, производящиеся, как правило, с прежней скоростью.

Так что же такое современный суперкомпьютер? Самая мощная ЭВМ на сегодняшний день - это система Intel ASCI RED, построенная по заказу Министерства энергетики США. Чтобы представить себе возможности этого суперкомпьютера, достаточно сказать, что он объединяет в себе 9632 (!) процессора Pentium Pro, имеет более 600 Гбайт оперативной памяти и общую производительность в 3200 миллиардов операций в секунду. Человеку потребовалось бы 100000 лет, чтобы даже с калькулятором выполнить все те операции, которые этот компьютер делает всего за 1 секунду!

Создать подобную вычислительную систему - все равно, что построить целый завод со своими системами охлаждения, бесперебойного питания и т.д. Понятно, что любой суперкомпьютер, даже в более умеренной конфигурации, должен стоить не один миллион долларов США: ради интереса прикиньте, сколько стоят, скажем, лишь 600 Гбайт оперативной памяти? Возникает естественный вопрос: какие задачи настолько важны, что требуются компьютеры стоимостью в несколько миллионов долларов? Или еще один: какие задачи настолько сложны, что хорошего Pentium III для их решения недостаточно?

Нужны ли нам суперкомпьютеры?
Оказывается, существует целый ряд жизненно важных проблем, которые просто невозможно решать без использования суперкомпьютерных технологий.

Возьмем, к примеру, США, по территории которых два раза в год проходят разрушительные торнадо. Они сметают на своем пути города, поднимают в воздух автомобили и автобусы, выводят реки из берегов, заливая тем самым гигантские территории. Борьба с торнадо - существенная часть американского бюджета. Только штат Флорида, который находится недалеко от тех мест, где эти смерчи рождаются, за последние годы потратил более 50 миллиардов долларов на экстренные меры по спасению людей. Правительство не жалеет денег на внедрение технологий, которые позволили бы предсказывать появление торнадо и определять, куда он направится.

Как рассчитать торнадо? Очевидно, что для этого надо решить задачу о локальном изменении погоды, то есть задачу о движении масс воздуха и распределении тепла в неком регионе. Принципиально это несложно, однако на практике возникают две проблемы. Проблема первая: чтобы заметить появление смерча, надо проводить расчет на характерных для его образования размерах, то есть на расстояниях порядка двух километров. Вторая трудность связана с правильным заданием начальных и граничных условий. Дело в том, что температура на границах интересующего вас региона зависит от того, что делается в соседних регионах. Рассуждая дальше, легко убедиться, что мы не можем решить задачу о смерче, не имея данных о климате на всей Земле. Климат на планете рассчитать можно, что и делается каждый день во всех странах для составления среднесрочных прогнозов погоды. Однако имеющиеся ресурсы позволяют вести расчеты лишь с очень большим шагом - десятки и сотни километров. Ясно, что к предсказанию смерчей такой прогноз не имеет никакого отношения.

Необходимо совместить две, казалось бы, плохо совместимые задачи: глобальный расчет, где шаг очень большой, и локальный, где шаг очень маленький. Сделать это можно, но лишь собрав в кулаке действительно фантастические вычислительные ресурсы. Дополнительная трудность состоит еще и в том, что вычисления не должны продолжаться более 4 часов, так как за 5 часов картина погоды смазывается совершенно, и все, что вы считаете, уже не имеет никакого отношения к реальности. Нужно не только обработать гигантский объем данных, но и сделать это достаточно быстро. Такое под силу лишь суперкомпьютерам.

Предсказание погоды - далеко не единственный пример использования суперкомпьютеров. Сегодня без них не обойтись в сейсморазведке, нефте- и газодобывающей промышленности, автомобилестроении, проектировании электронных устройств, фармакологии, синтезе новых материалов и многих других отраслях.

Так, по данным компании Ford, для выполнения crash-тестов, при которых реальные автомобили разбиваются о бетонную стену с одновременным замером необходимых параметров, со съемкой и последующей обработкой результатов, ей понадобилось бы от 10 до 150 прототипов для каждой новой модели. При этом общие затраты составили бы от 4 до 60 миллионов долларов. Использование суперкомпьютеров позволило сократить число прототипов на одну треть.

Известной фирме DuPont суперкомпьютеры помогли синтезировать материал, заменяющий хлорофлюорокарбон. Нужно было найти материал, имеющий те же положительные качества: невоспламеняемость, стойкость к коррозии и низкую токсичность, но без вредного воздействия на озоновый слой Земли. За одну неделю были проведены необходимые расчеты на суперкомпьютере с общими затратами около 5 тысяч долларов. По оценкам специалистов DuPont, использование традиционных экспериментальных методов исследований потребовало бы 50 тысяч долларов и около трех месяцев работы - и это без учета времени, необходимого на синтез и очистку требуемого количества вещества.

Почему суперкомпьютеры считают так быстро?
Итак, мы видим, что без суперкомпьютеров сегодня действительно не обойтись. Осталось прояснить еще один вопрос: почему они считают так быстро? Это может быть связано, во-первых, с развитием элементной базы и, во-вторых, с использованием новых решений в архитектуре компьютеров.

Попробуем разобраться, какой из этих факторов оказывается решающим для достижения рекордной производительности. Обратимся к известным историческим фактам. На одном из первых компьютеров мира EDSAC, появившемся в 1949 году в Кембридже и имевшем время такта 2 микросекунды (2·10-6 секунды), можно было выполнить 2n арифметических операций за 18n миллисекунд, то есть в среднем 100 арифметических операций в секунду. Сравним с одним вычислительным узлом современного суперкомпьютера Hewlett-Packard V2600: время такта приблизительно 1,8 наносекунды (1,8·10-9 секунды), а пиковая производительность - около 77 миллиардов арифметических операций в секунду.

Что же получается? За полвека производительность компьютеров выросла более чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1,8 наносекунды, составляет лишь около 1000 раз. Откуда же взялось остальное? Ответ очевиден - за счет использования новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий.

Различают два способа параллельной обработки: собственно параллельную и конвейерную. Оба способа интуитивно абсолютно понятны, поэтому сделаем лишь небольшие пояснения.

Параллельная обработка
Предположим для простоты, что некое устройство выполняет одну операцию за один такт. В этом случае тысячу операций такое устройство выполнит за тысячу тактов. Если имеется пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести тактов. Аналогично система из N устройств ту же работу выполнит за 1000/N тактов. Подобные примеры можно найти и в жизни: если один солдат выкопает траншею за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справится с той же работой за 12 минут- принцип параллельности в действии!

Кстати, пионером в параллельной обработке потоков данных был академик А. А. Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу методом сеток, посадив несколько десятков барышень с арифмометрами за столы (узлы сетки). Барышни передавали данные одна другой просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была рассчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Так создали, можно сказать, первую параллельную систему. Хотя расчеты водородной бомбы провели мастерски, точность их оказалась очень низкой, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.

Конвейерная обработка
Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций, таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары слагаемых последовательно, одну за другой, до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в расчленении операции на отдельные этапы, или, как это принято называть, ступени конвейера. Каждая ступень, выполнив свою работу, передает результат следующей ступени, одновременно принимая новую порцию входных данных. Получается очевидный выигрыш в скорости обработки. В самом деле, предположим, что в операции сложения можно выделить пять микроопераций, каждая из которых выполняется за один такт работы компьютера. Если есть одно неделимое последовательное устройство сложения, то 100 пар аргументов оно обработает за 500 тактов. Если теперь каждую микрооперацию преобразовать в отдельную ступень конвейерного устройства, то на пятом такте на разной стадии обработки будут находиться первые пять пар аргументов, и далее конвейерное устройство будет выдавать результат очередного сложения каждый такт. Очевидно, что весь набор из ста пар слагаемых будет обработан за 104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Идеи параллельной обработки появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах. Все современные микропроцессоры, будь то Pentium III или РА-8600, Е2К или Power2 SuperChip, используют тот или иной вид параллельной обработки.

Для того чтобы лишний раз убедиться, что все новое - это хорошо забытое старое, достаточно лишь нескольких примеров. Уже в 1961 году создается компьютер IBM STRETCH, имеющий две принципиально важные особенности: опережающий просмотр вперед для выборки команд (при котором одновременно с текущей считываются команды, выполняемые позднее) и расслоение памяти на два банка - реализация параллелизма при работе с памятью. В 1963 году в Манчестерском университете разработан компьютер ATLAS, использующий конвейерный принцип выполнения команд. Выполнение команд разбито на четыре стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции. Это позволило уменьшить время выполнения команд в среднем с 6 до 1,6 микросекунды. В1969 году Control Data Corporation выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами.

Современные суперкомпьютеры
А что же сейчас используют в мире? По каким направлениям идет развитие высокопроизводительной вычислительной техники? Таких направлений четыре.

Векторно-конвейерные компьютеры

Две главные особенности таких машин: наличие конвейерных функциональных устройств и набора векторных команд. В отличие от обычных команд векторные оперируют целыми массивами независимых данных, то есть команда вида А=В+С может означать сложение двух массивов, а не двух чисел. Характерный представитель данного направления - семейство векторно-конвейерных компьютеров CRAY, куда входят, например, CRAY EL, CRAY J90, CRAY T90 (в марте этого года американская компания TERA перекупила подразделение CRAY у компании Silicon Graphics, Inc.).

Массивно-параллельные компьютеры с распределенной памятью
Идея построения компьютеров этого класса тривиальна: серийные микропроцессоры соединяются с помощью сетевого оборудования - вот и все. Достоинств у такой архитектуры масса: если нужна высокая производительность, то можно добавить процессоры, а если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию. К этому же классу можно отнести и простые сети компьютеров, которые сегодня все чаще рассматриваются как дешевая альтернатива крайне дорогим суперкомпьютерам. (Правда, написать эффективную параллельную программу для таких сетей довольно сложно, а в некоторых случаях просто невозможно). К массивно-параллельным можно отнести компьютеры Intel Paragon, ASCI RED, IBM SP1, Parsytec, в какой-то степени IBM SP2 и CRAY T3D/T3E.

Параллельные компьютеры с общей памятью

Вся оперативная память в таких компьютерах разделяется несколькими одинаковыми процессорами, обращающимися к общей дисковой памяти. Проблем с обменом данными между процессорами и синхронизацией их работы практически не возникает. Вместе с тем главный недостаток такой архитектуры состоит в том, что по чисто техническим причинам число процессоров, имеющих доступ к общей памяти, нельзя сделать большим. В данное направление суперкомпьютеров входят многие современные SMP-компьютеры (Symmetric Multi Processing), например сервер НР9000 N-class или Sun Ultra Enterprise 5000.

Кластерные компьютеры
Этот класс суперкомпьютеров, строго говоря, нельзя назвать самостоятельным, скорее, он представляет собой комбинации предыдущих трех. Из нескольких процессоров, традиционных или векторно-конвейерных, и общей для них памяти формируется вычислительный узел. Если мощности одного узла недостаточно, создается кластер из нескольких узлов, объединенных высокоскоростными каналами. По такому принципу построены CRAY SV1, HP Exemplar, Sun StarFire, NEC SX-5, последние модели IBM SP2 и другие. В настоящее время именно это направление считается наиболее перспективным.

Два раза в год составляется список пятисот самых мощных вычислительных установок мира (его можно посмотреть в Интернете по адресу http://parallel.ru/top500.html). Согласно последней редакции списка top500, вышедшей в ноябре прошлого года, первое место занимает массивно-параллельный компьютер Intel ASCI Red. На второй позиции стоит компьютер ASCI Blue-Pacific от IBM, объединяющий 5808 процессоров PowerPC 604e/332MHz. Оба эти суперкомпьютера созданы в рамках американской национальной программы Advanced Strategic Computing Initiative, аббревиатура которой и присутствует в названии. Производительность компьютера, стоящего на последнем, 500-м, месте в списке самых мощных, составляет 33,4 миллиарда операций в секунду.

Если мощность существующих компьютеров поражает, то что говорить о планах. В декабре 1999 года корпорация IBM сообщила о новом исследовательском проекте общей стоимостью около 100 миллионов долларов, цель которого - построение суперкомпьютера, в 500 раз превосходящего по производительности самые мощные компьютеры сегодняшнего дня. Компьютер, имеющий условное название Blue Gene, будет иметь производительность порядка 1 PETAFLOPS (1015 операций в секунду) и использоваться для изучения свойств белковых молекул. Предполагается, что каждый отдельный процессор Blue Gene будет иметь производительность порядка 1 GFLOPS (109 операций в секунду). 32 подобных процессора будут помещены на одну микросхему. Компактная плата размером 2x2 фута будет вмещать 64 микросхемы, что по производительности не уступает упоминавшимся ранее суперкомпьютерам ASCI, занимающим площадь 8000 квадратных метров. Более того, 8 таких плат будут помещены в 6-футовую стойку, а вся система будет состоять из 64 стоек с суммарной производительностью 1 PFLOPS. Фантастика!

Вычислительный кластер Московского государственного университета им. М. В. Ломоносова - минимальная стоимость, суперкомпьютерная производительность. В настоящий момент это самая мощная вычислительная система, установленная в вузе России.

Суперкомпьютеры в России

Идеи построения собственных суперкомпьютерных систем существовали в России всегда. Еще в 1966 году М.А.Карцев выдвинул идею создания многомашинного вычислительного комплекса М-9 производительностью около миллиарда операций в секунду. В то время ни одна из машин мира не работала с такой скоростью. Однако, несмотря на положительную оценку министерства, комплекс М-9 промышленного освоения не получил.

Работы по созданию суперкомпьютерных систем и суперкомпьютерных центров ведутся в России и сейчас. Наиболее известна линия отечественных суперкомпьютеров МВС-1000, создаваемая в кооперации научно-исследовательских институтов Российской академии наук и промышленности. Супер-ЭВМ линии МВС-1000 - это мультипроцессорный массив, объединенный с внешней дисковой памятью, устройствами ввода/вывода информации и управляющим компьютером. Компьютеры МВС-1000 используют микропроцессоры Alpha 21164 (разработка фирмы DEC-Compaq) с производительностью до 1-2 миллиардов операций в секунду и оперативной памятью объемом 0,1-2 Гбайта.

Спектр научных и практических задач, решаемых на таком компьютере, может быть очень велик: расчет трехмерных нестационарных течений вязкосжимаемого газа, расчеты течений с локальными тепловыми неоднородностями в потоке, моделирование структурообразования и динамики молекулярных и биомолекулярных систем, решение задач линейных дифференциальных игр, расчет деформаций твердых тел с учетом процессов разрушения и многие другие. Одна из самых мощных систем линии МВС-1000, установленная в Межведомственном суперкомпьютерном центре, содержит 96 процессоров.

В последнее время в России, также как и во всем мире, активно используется кластерный подход к построению суперкомпьютеров. Покупаются стандартные компьютеры и рабочие станции, которые с помощью стандартных сетевых средств объединяются в параллельную вычислительную систему. По такому пути пошел, и, надо сказать, успешно, Научно-исследовательский вычислительный центр Московского государственного университета им. М.В.Ломоносова, создавший кластер из 12 двухпроцессорных серверов "Эксимер" на базе Intel Pentium III/500MHz (в сумме 24 процессора, более 3 Гбайт оперативной памяти, 66 Гбайт дисковой памяти). Сегодня это крупнейшая вычислительная установка в вузе России, предназначенная для поддержки фундаментальных научных исследований и образования. При минимальной стоимости вычислительный кластер НИВЦ МГУ показывает производительность 5,7 миллиарда операций в секунду при решении системы линейных алгебраических уравнений с плотной матрицей размером 16000x16000! В будущем планируется значительно увеличить мощность кластера как за счет добавления новых процессоров, так и за счет модернизации вычислительных узлов.

Вместо заключения
К сожалению, чудеса в нашей жизни случаются редко. Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностью их использования. Да что там использование, иногда даже вопросы, возникающие вокруг суперкомпьютеров, ставят в тупик. Как вы думаете, верно ли утверждение: чем мощнее компьютер, тем быстрее на нем можно решить данную задачу? Ну, конечно же, нет... Простой бытовой пример. Если один землекоп выкопает яму за 1 час, то два землекопа справятся с задачей за 30 мин - в это еще можно поверить. А за сколько времени эту работу сделают 60 землекопов? Неужели за 1 минуту? Конечно же, нет! Начиная с некоторого момента они будут просто мешать друг другу, не ускоряя, а замедляя процесс. Так же и в компьютерах: если задача слишком мала, то мы будем дольше заниматься распределением работы, синхронизацией процессов, сборкой результатов и т. п., чем непосредственно полезной деятельностью.

Но все вопросы, сопровождающие суперкомпьютер, конечно же, решаются. Да, использовать суперкомпьютеры сложнее, чем персоналку: нужны дополнительные знания и технологии, высококвалифицированные специалисты, более сложная информационная инфраструктура. Написать эффективную параллельную программу намного сложнее, чем последовательную, да и вообще создание программного обеспечения для параллельных компьютеров - это центральная проблема суперкомпьютерных вычислений. Но без супер-ЭВМ сегодня не обойтись, и отрадно, что в нашей стране есть понимание необходимости развития этих технологий. Так, в ноябре прошлого года в Президиуме Российской академии наук состоялось открытие межведомственного суперкомпьютерного центра. В процессе становления суперкомпьютерные центры в Дубне, Черноголовке, Институте прикладной математики РАН им. М. В. Келдыша, Институте математического моделирования РАН, Московском государственном университете им. М. В. Ломоносова. Создана и развивается линия отечественных суперкомпьютеров МВС-1000. Активно разворачивает свою деятельность Информационно-аналитический центр по параллельным вычислениям в сети Интернет WWW.PARALLEL.RU, осуществляющий информационную поддержку многих российских проектов. А иначе и нельзя. Параллельные вычисления и параллельные компьютеры - это реальность, и это уже навсегда.
Доктор физико-математических наук В. Воеводин


Первый суперкомпьютер Atlas появился в начале 60-х годов и был установлен в Манчестерском университете. Он был в разы менее мощный, чем современные домашние компьютеры. В нашем обзоре собрана «десятка» самых мощных в истории суперкомпьютеров. Правда в связи с быстро развивающимися в этой сфере технологиями устаревают эти мощные машины в среднем за 5 лет..

Производительность современных суперкомпьютеров измеряется в петафлопсах - единице измерения, показывающей, сколько операций с плавающей запятой в секунду выполняет компьютер. Сегодня речь пойдет о десяти самых дорогих современных суперкомпьютерах.

1. IBM Roadrunner (США)


$ 130 млн
Roadrunner был построен IBM в 2008 году для Национальной лаборатории в Лос-Аламосе (Нью-Мексико, США). Он стал первым в мире компьютером, чья средняя рабочая производительность превысила 1 петафлопс. При этом он был рассчитан на максимальную производительность в 1,7 петафлопса. Согласно списка Supermicro Green500, в 2008 году Roadrunner был четвертым по энергоэффективности суперкомпьютером в мире. Списан Roadrunner был 31 марта 2013 года, после чего его заменили меньшим по размерам и более энергоэффективным суперкомпьютером под названием Cielo.

2. Vulcan BlueGene/Q (США)


$ 100 млн
Vulcan – суперкомпьютер, состоящий из 24 отдельных блоков-стоек, который был создан IBM для Министерства энергетики и установлен в Национальной лаборатории Лоуренса Ливермора, штат Калифорния. Он имеет пиковую производительность в 5 петафлопсов и в настоящее время является девятым по скорости суперкомпьютером в мире. Vulcan вступил в строй в 2013 году и сейчас используется Ливерморской национальной лабораторией для исследований в области биологии, физики плазмы, климатических именений, молекулярных систем и т. д.

3. SuperMUC (Германия)

$ 111 млн
SuperMUC в настоящее время является 14-м по скорости суперкомпьютером в мире. В 2013 году он был 10-м, но развитие технологий не стоит на месте. Тем не менее, он в данный момент является вторым по скорости суперкомпьютером в Германии. SuperMUC находится в ведении Лейбницкого суперкомпьютерного центра при Баварской академии наук рядом с Мюнхеном.

Система была создана IBM, работает на оболочке Linux, содержит более 19000 процессоров Intel и Westmere-EX, а также имеет пиковую производительность чуть более 3 петафлопсов. SuperMUC используется европейскими исследователями в областях медицины, астрофизики, квантовой хромодинамики, вычислительной гидродинамики, вычислительной химии, анализа генома и моделирования землетрясений.

4. Trinity (США)

$ 174 млн
Можно было бы ожидать, что подобный суперкомпьютер (учитывая то, для чего он строится) должен быть безумно дорогим, но благодаря развитию технологий стало возможным удешевление цены Trinity. Правительство США собирается использовать Trinity для того, чтобы поддерживать эффективность и безопасность ядерного арсенала Америки.

Trinity, который строится в настоящее время, станет совместным проектом Сандийской национальной лаборатории и Лос-Аламосской национальной лаборатории в рамках программы Прогнозного моделирования и вычислительной обработки данных Национальной администрации по ядерной безопасности.

5. Sequoia BlueGene/Q (США)


$ 250 млн
Суперкомпьютер Sequoia класса BlueGene/Q был разработан IBM для Национальной администрации по ядерной безопасности, в рамках программы Прогнозного моделирования и вычислительной обработки данных. Он был запущен в эксплуатацию в июне 2012 года в Ливерморской национальной лаборатории и стал на тот момент самым быстрым суперкомпьютером в мире. Сейчас он занимает третье место в мире по скорости (теоретический пик производительности Sequoia - 20 петафлопсов или 20 триллионов вычислений в секунду).

Стабильно компьютер работает при 10 петафлопсах. Используется Sequoia для поддержки различных научных приложений, изучения астрономии, энергетики, человеческого генома, изменения климата и разработки ядерного оружия.

6. ASC Purple и BlueGene / L (США)


$ 290 млн
Эти два суперкомпьютера работали вместе. Они были построены IBM и установлены в 2005 году в Ливерморской национальной лаборатории. Из эксплуатации они были выведены в 2010 году. На момент создания ASC Purple занимал 66-е место по скорости в списке топ-500 суперкомпьютеров, а BlueGene / L был предыдущим поколением модели BlueGene / Q.

ASCI Purple был построен для пятого этапа программы Прогнозного моделирования и вычислительной обработки данных Министерства энергетики США, а также Национальной администрации по ядерной безопасности. Его целью являлась симуляция и замена реальных испытаний оружия массового уничтожения. BlueGene/L использовали для прогнозирования глобального изменения климата.

7. Sierra и Summit (США)


$ 325 млн
Nvidia и IBM скоро помогут Америке вернуть лидирующие позиции в области сверхскоростных суперкомпьютерных технологий, научных исследований, а также экономической и национальной безопасности. Оба компьютера будут закончены в 2017 году.

В настоящее время самым быстрым суперкомпьютером в мире является китайский Tianhe-2, который способен достигнуть мощности в 55 петафлопсов, что в два раза больше, чем устройство, находящееся на втором месте в списке. Sierra будет выдавать более чем 100 петафлопсов, в то время как Summit сможет развить 300 петафлопсов.

Sierra, которая будет установлена в Ливерморской национальной лаборатории, будет обеспечивать безопасность и эффективность ядерной программы страны. Summit заменит устаревший суперкомпьютер Titan в национальной лаборатории Oak Ridge и будет предназначаться для тестирования и поддержки научных приложений по всему миру.

8. Tianhe-2 (Китай)

$ 390 млн
Китайский Tianhe-2 (что переводится как "Млечный путь-2") является самым быстрым суперкомпьютером в мире. Компьютер, разработанный командой из 1300 ученых и инженеров, находится в Национальном суперкомпьютерном центре в Гуанчжоу. Он был построен китайским Оборонным научно-техническим университетом Народно-освободительной армии Китая. Tianhe-2 способен выполнять 33 860 триллионов вычислений в секунду. К примеру, один час расчетов суперкомпьютера эквивалентен 1000 годам работы 1,3 миллиарда человек. Используется машина для моделирования и анализа правительственных систем безопасности.

9. Earth Simulator (Япония)


$ 500 млн
"Симулятор Земли" был разработан японским правительством еще в 1997 году. Стоимость проекта составляет 60 млрд иен или примерно $ 500 млн. Earth Simulator был завершен в 2002 году для агентства аэрокосмических исследований Японии, Японского научно-исследовательского института по атомной энергии и Японского центра морских и наземных исследований и технологий.

ES был самым быстрым суперкомпьютером в мире с 2002 по 2004 годы, а служит он и поныне для работы с глобальными климатическими моделями, для оценки последствий глобального потепления и оценки проблем геофизики коры Земли.

10. Fujitsu K (Япония)

$ 1,2 млрд
Самый дорогой в мире суперкомпьютер всего лишь четвертый по скорости в мире (11 петафлопсов). В 2011 году он был самым быстрым суперкомпьютером в мире. Fujitsu K, расположенный в Институте передовых вычислительных технологий RIKEN, примерно в 60 раз быстрее, чем Earth Simulator. На его обслуживание уходит порядка $ 10 млн в год, а использует суперкомпьютер 9,89 МВт (сколько электроэнергии используют 10 000 загородных домов или один миллион персональных компьютеров).

Стоит отметить, что современные учёные шагнули так далеко, что уже появились .

Главная → История отечественной вычислительной техники → Суперкомпьютеры

Суперкомпьютеры

Андрей Борзенко

Суперкомпьютерами называют самые быстрые компьютеры. Их основное отличие от мэйнфреймов состоит в следующем: все ресурсы такого компьютера обычно направлены на то, чтобы решить одну или в крайнем случае несколько задач насколько возможно быстро, тогда как мэйнфреймы, как правило, выполняют довольно большое число задач, конкурирующих друг с другом. Бурное развитие компьютерной индустрии определяет относительность базового понятия — то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает. Существует и такое шутливое определение суперкомпьютера — это устройство, сводящее проблему вычислений к проблеме ввода-вывода. Впрочем, и в нем есть доля истины: часто единственным узким местом в быстродействующей системе остаются именно устройства ввода-вывода. Узнать, какие суперкомпьютеры в настоящее время имеют максимальную производительность, можно из официального списка пятисот самых мощных систем мира — Top500 (http://www.top500.org), который публикуется два раза в год.

В любом компьютере все основные параметры тесно связаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. По этой причине и суперкомпьютеры характеризуются в настоящее время не только максимальной производительностью, но и максимальным объемом оперативной и дисковой памяти. Обеспечение таких технических характеристик обходится довольно дорого — стоимость суперкомпьютеров чрезвычайно высока. Какие же задачи настолько важны, что требуют систем стоимостью в десятки и сотни миллионов долларов? Как правило, это фундаментальные научные или инженерные вычислительные задачи с широкой областью применения, эффективное решение которых возможно только при наличии мощных вычислительных ресурсов. Вот лишь некоторые области, где возникают задачи подобного рода:

  • предсказания погоды, климата и глобальных изменений в атмосфере;
  • науки о материалах;
  • построение полупроводниковых приборов;
  • сверхпроводимость;
  • структурная биология;
  • разработка фармацевтических препаратов;
  • генетика человека;
  • квантовая хромодинамика;
  • астрономия;
  • автомобилестроение;
  • транспортные задачи;
  • гидро- и газодинамика;
  • управляемый термоядерный синтез;
  • эффективность систем сгорания топлива;
  • разведка нефти и газа;
  • вычислительные задачи в науках о Мировом океане;
  • распознавание и синтез речи;
  • распознавание изображений.

Суперкомпьютеры считают очень быстро благодаря не только использованию самой современной элементной базы, но и новым решениям в архитектуре систем. Основное место здесь занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий. Параллельная обработка имеет две разновидности: конвейерность и собственно параллельность. Суть конвейерной обработки заключается в том, чтобы выделить отдельные этапы выполнения общей операции, причем каждый этап, выполнив свою работу, передает результат следующему, одновременно принимая новую порцию входных данных. Очевидный выигрыш в скорости обработки получается за счет совмещения прежде разнесенных во времени операций.

Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если имеется пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени.

Конечно, сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры используют тот или иной вид параллельной обработки даже в рамках одного кристалла. Вместе с тем сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных компьютерах своего времени. Здесь особая заслуга принадлежит компаниям IBM и Control Data Corporation (CDC). Речь идет о таких нововведениях, как разрядно-параллельная память, разрядно-параллельная арифметика, независимые процессоры ввода-вывода, конвейер команд, конвейерные независимые функциональные устройства и т. д.

Обычно слово «суперкомпьютер» ассоциируется с компьютерами марки Cray, хотя сегодня это уже далеко не так. Разработчиком и главным конструктором первого суперкомпьютера был Сеймур Крэй — один из самых легендарных личностей в компьютерной отрасли. В 1972 г. он уходит из компании CDC и основывает собственную компанию Cray Research. Первый суперкомпьютер CRAY-1 был разработан через четыре года (в 1976 г.) и имел векторно-конвейерную архитектуру с 12 конвейерными функциональными устройствами. Пиковая производительность Cray-1 составляла 160 млн операций/с (время такта 12,5 нс), а цикл 64-разрядной оперативной памяти (которая могла расширяться до 8 Мбайт) занимал 50 нс. Главным новшеством было, конечно, введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства.

На протяжении 60-80-х годов внимание мировых лидеров по производству суперкомпьютеров было сосредоточено на изготовлении вычислительных систем, хорошо справляющихся с решением задач на большие объемы вычислений с плавающей точкой. Недостатка в таких задачах не ощущалось — почти все они были связаны с ядерными исследованиями и аэрокосмическим моделированием и велись в интересах военных. Стремление достичь максимальной производительности в самые сжатые сроки означало, что критерием оценки качества системы была не ее цена, а быстродействие. Например, суперкомпьютер Cray-1 стоил тогда от 4 до 11 млн долл. в зависимости от комплектации.

На рубеже 80-90-х гг. закончилась «холодная» война и на смену военным заказам пришли коммерческие. К тому времени промышленность достигла больших успехов в производстве серийных процессоров. Они обладали примерно той же вычислительной мощностью, что и заказные, но были значительно дешевле. Использование стандартных комплектующих и изменяемое количество процессоров позволило решить проблему масштабируемости. Теперь с увеличением вычислительной нагрузки можно было повышать производительность суперкомпьютера и его периферийных устройств, добавляя новые процессоры и устройства ввода-вывода. Так, в 1990 г. появился суперкомпьютер Intel iPSC/860 с числом процессоров, равным 128, который показал на тесте LINPACK производительность 2,6 Гфлопс.

В ноябре прошлого года была опубликована 18-я редакция списка 500 мощнейших компьютеров мира — Top500. Лидером списка по-прежнему остается корпорация IBM (http://www.ibm.com), которой принадлежит 32% установленных систем и 37% от общей производительности. Интересной новостью стало появление Hewlett-Packard на втором месте по количеству систем (30%). При этом, поскольку все эти системы относительно невелики, то их суммарная производительность составляет всего 15% от всего списка. Ожидается, что после слияния с Compaq обновленная компания займет доминирующее положение в этом списке. Далее по количеству компьютеров в списке идут SGI, Cray и Sun Microsystems.

Самым мощным суперкомпьютером мира оставалась по-прежнему система ASCI White (к ней мы еще вернемся), установленная в Ливерморской лаборатории (США) и показавшая производительность 7,2 Тфлопс на тесте LINPACK (58% от пиковой производительности). На втором месте стояла система Compaq AlphaServer SC, установленная в Питтсбургском суперкомпьютерном центре с производительностью в 4 Тфлопс. Замыкает список система Cray T3E с производительностью на LINPACK в 94 Гфлопс.

Стоит отметить, что список включал уже 16 систем с производительностью более 1 Тфлопс, половина из которых установлены IBM. Стабильно увеличивается число систем, представляющих собой кластеры из небольших SMP-блоков, — сейчас в списке уже 43 такие системы. Однако большинство в списке по-прежнему за массивно-параллельными системами (50%), за которыми идут кластеры, состоящие из больших SMP-систем (29%).

Типы архитектур

Основной параметр классификации параллельных компьютеров — наличие общей или распределенной памяти. Нечто среднее представляют собой архитектуры, где память физически распределена, но логически общедоступна. С аппаратной точки зрения для реализации параллельных систем напрашиваются две основные схемы. Первая — несколько отдельных систем, с локальной памятью и процессорами, взаимодействующих в какой-либо среде посредством посылки сообщений. Вторая — системы, взаимодействующие через разделяемую память. Не вдаваясь пока в технические детали, скажем несколько слов о типах архитектур современных суперкомпьютеров.

Идея массивно-параллельных систем с распределенной памятью (Massively Parallel Processing, MPP) довольно проста. Для этой цели берутся обычные микропроцессоры, каждый из которых снабжают своей локальной памятью и соединяют посредством некоей коммутационной среды. Достоинств у такой архитектуры много. Если нужна высокая производительность, то можно добавить еще процессоров, а если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию. Однако у MPP есть и недостатки. Дело в том, что взаимодействие между процессорами идет намного медленнее, чем обработка данных самими процессорами.

У параллельных компьютеров с общей памятью вся оперативная память разделяется между несколькими одинаковыми процессорами. Это снимает проблемы предыдущего класса, но добавляет новые. Дело в том, что число процессоров, имеющих доступ к общей памяти, по чисто техническим причинам нельзя сделать большим.

Основные особенности векторно-конвейерных компьютеров — это, конечно, конвейерные функциональные устройства и набор векторных команд. В отличие от традиционного подхода векторные команды оперируют целыми массивами независимых данных, что позволяет эффективно загружать доступные конвейеры.

Последнее направление, строго говоря, не является самостоятельным, а скорее представляет собой комбинации предыдущих трех. Из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти формируется вычислительный узел. Если полученной вычислительной мощности недостаточно, то объединяют несколько узлов высокоскоростными каналами. Как известно, подобную архитектуру называют кластерной.

MPP-системы

Массово-параллельные масштабируемые системы предназначены для решения прикладных задач, требующих большого объема вычислений и обработки данных. Рассмотрим их подробнее. Как правило, они состоят из однородных вычислительных узлов, включающих:

  • один или несколько центральных процессоров;
  • локальную память (прямой доступ к памяти других узлов невозможен);
  • коммуникационный процессор или сетевой адаптер;
  • иногда накопители на жестких дисках и/или другие устройства ввода-вывода.

Кроме того, в систему могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Все они связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т. п.). Что касается ОС, то здесь есть два варианта. В первом случае полноценная ОС работает только на управляющей машине, тогда как на каждом узле работает сильно урезанный вариант ОС, обеспечивающий только работу расположенной в нем ветви параллельного приложения. В другом случае на каждом узле работает полноценная UNIX-подобная ОС.

Число процессоров в системах с распределенной памятью теоретически ничем не ограничено. С помощью подобных архитектур можно строить масштабируемые системы, производительность которых растет линейно с увеличением числа процессоров. Кстати, сам термин «массивно-параллельные системы» применяется обычно для обозначения таких масштабируемых компьютеров с большим числом (десятки и сотни) узлов. Масштабируемость вычислительной системы необходима для пропорционального ускорения вычислений, но ее, увы, недостаточно. Чтобы получить адекватный выигрыш при решении задачи, требуется еще и масштабируемый алгоритм, способный загрузить полезными вычислениями все процессоры суперкомпьютера.

Напомним, что существуют две модели выполнения программ на многопроцессорных системах: SIMD (single instruction stream — multiple data streams) и MIMD (multiple instructions streams — multiple data streams). Первая предполагает, что все процессоры выполняют одну и ту же команду, но каждый над своими данными. Во второй каждый процессор обрабатывает свой поток команд.

В системах с распределенной памятью для пересылки информации от процессора к процессору необходим механизм передачи сообщений по сети, связывающей вычислительные узлы. Чтобы абстрагироваться от подробностей функционирования коммуникационной аппаратуры и программировать на высоком уровне, обычно пользуются библиотеками передачи сообщений.

Суперкомпьютеры Intel

Корпорация Intel (http://www.intel.com) хорошо известна в мире суперкомпьютеров. Ее многопроцессорные компьютеры Paragon с распределенной памятью стали такой же классикой, как векторно-конвейерные компьютеры от Cray Research.

Intel Paragon использует в одном узле пять процессоров i860 ХР с тактовой частотой 50 МГц. Иногда в один узел помещают процессоры разных типов: скалярный, векторный и коммуникационный. Последний служит для того, чтобы разгрузить основной процессор от выполнения операций, связанных с передачей сообщений.

Самая существенная характеристика новой параллельной архитектуры — тип коммуникационного оборудования. Именно от него зависят два наиболее важных показателя работы суперкомпьютера — скорость передачи данных между процессорами и накладные расходы на передачу одного сообщения.

Межсоединение сконструировано таким образом, чтобы обеспечить высокую скорость обмена сообщениями при минимальной задержке. Оно обеспечивает соединение более тысячи гетерогенных узлов по топологии двухмерной прямоугольной решетки. Однако при разработке большинства приложений можно считать, что любой узел непосредственно связан со всеми другими узлами. Межсоединение масштабируемо: его пропускная способность возрастает с увеличением числа узлов. При конструировании разработчики стремились минимизировать участие в передаче сообщений тех процессоров, которые выполняют пользовательские процессы. С этой целью введены специальные процессоры обработки сообщений, которые располагаются на плате узла и отвечают за отработку протокола обмена сообщениями. В результате основные процессоры узлов не отвлекаются от решения задачи. В частности, не происходит достаточно дорогостоящего переключения с задачи на задачу, а решение прикладных задач идет параллельно с обменом сообщениями.

Собственно передача сообщений осуществляется системой маршрутизации, основанной на компонентах маршрутизатора узлов сети (Mesh Router Components, MRC). Для доступа MRC данного узла к его памяти в узле имеется еще специальный интерфейсный сетевой контроллер, который представляет собой заказную СБИС, обеспечивающую одновременную передачу в память узла и обратно, а также отслеживающую ошибки при передаче сообщений.

Модульное строение Intel Paragon способствует не только поддержанию масштабируемости. Оно позволяет рассчитывать на то, что данная архитектура послужит основой для новых компьютеров, базирующихся на иных микропроцессорах или использующих новые технологии обмена сообщениями. Масштабируемость опирается также на сбалансированность различных блоков суперкомпьютера на самых разных уровнях; в противном случае с ростом числа узлов где-либо в системе может появиться узкое место. Так, скорость и емкость памяти узлов балансируются с пропускной способностью и задержками межсоединения, а производительность процессоров внутри узлов — с пропускной способностью кэш-памяти и оперативной памяти и т. д.

До недавнего времени одним из самых быстродействующих компьютеров был Intel ASCI Red — детище ускоренной стратегической компьютерной инициативы ASCI (Accelerated Strategic Computing Initiative). В этой программе участвуют три крупнейшие национальные лаборатории США (Ливерморская, Лос-Аламосская и Sandia). Построенный по заказу Министерства энергетики США в 1997 г., ASCI Red объединяет 9152 процессора Pentium Pro, имеет 600 Гбайт суммарной оперативной памяти и общую производительность 1800 млрд операций в секунду.

Суперкомпьютеры IBM

Когда на компьютерном рынке появились универсальные системы с масштабируемой параллельной архитектурой SP (Scalable POWER parallel) корпорации IBM (http://www.ibm.com), они достаточно быстро завоевали популярность. Сегодня подобные системы работают в различных прикладных областях — таких, как вычислительная химия, анализ аварий, проектирование электронных схем, сейсмический анализ, моделирование водохранилищ, поддержка систем принятия решений, анализ данных и оперативная обработка транзакций. Успех систем SP определяется прежде всего их универсальностью, а также гибкостью архитектуры, базирующейся на модели распределенной памяти с передачей сообщений.

Вообще говоря, суперкомпьютер SP — это масштабируемая массивно-параллельная вычислительная система общего назначения, представляющая собой набор базовых станций RS/6000, соединенных высокопроизводительным коммутатором. Действительно, кому не известен, например, суперкомпьютер Deep Blue, который сумел обыграть в шахматы Гарри Каспарова? А ведь одна из его модификаций состоит из 32 узлов (IBM RS/6000 SP), базирующихся на 256 процессорах P2SC (Power Two Super Chip).

Семейство RS/6000 — это второе поколение компьютеров IBM, основанное на архитектуре с ограниченным набором команд (RISC), разработанной корпорацией в конце 70-х годов. Благодаря этой концепции для выполнения всей работы в компьютерной системе используется очень простой набор команд. Поскольку команды просты, они могут исполняться с очень высокой скоростью а также обеспечивают более эффективную реализацию исполняемой программы. Семейство RS/6000 основано на архитектуре POWER (архитектура с производительностью, оптимизированной за счет применения модернизированного RISC) и ее производных — PowerPC, P2SC, POWER3 и т. д. Поскольку архитектура POWER сочетает концепции архитектуры RISC с некоторыми более традиционными концепциями, в результате получается система с оптимальной общей производительностью.

Система RS/6000 SP предоставляет мощность нескольких процессоров для решения самых сложных вычислительных задач. Система коммутации SP — это новейшая разработка IBM в области широкополосной межпроцессорной связи без задержек для эффективных параллельных вычислений. Несколько разновидностей узлов процессора, изменяемые размеры фрейма (стойки) и разнообразные дополнительные возможности ввода-вывода обеспечивают подбор наиболее подходящей конфигурации системы. SP поддерживается лидирующими производителями ПО в таких областях, как параллельные базы данных и обработка транзакций в реальном времени, а также основными производителями технического ПО в таких областях, как обработка сейсмических данных и инженерное конструирование.

IBM RS/6000 SP расширяет возможности приложений благодаря параллельной обработке. Система снимает ограничения по производительности, помогает избежать проблем, связанных с масштабированием и присутствием неделимых, отдельно выполняемых фрагментов. Установленные по всему миру более чем у тысячи клиентов, SP предлагают решения для сложных и объемных технических и коммерческих приложений.

Основной блок SP — это процессорный узел, который имеет архитектуру рабочих станций RS/6000. Существует несколько типов SP-узлов: Thin, Wide, High, отличающихся рядом технических параметров. Так, например, High-узлы на базе POWER3-II включают до 16 процессоров и до 64 Гбайт памяти, а вот Thin-узлы допускают не более 4 процессоров и 16 Гбайт памяти.

Система масштабируется до 512 узлов, при этом возможно совмещение узлов различных типов. Узлы устанавливаются в стойки (до 16 узлов в каждой). SP может практически линейно масштабировать диски вместе с процессорами и памятью, что позволяет получать реальный доступ к терабайтам памяти. Такое увеличение мощности упрощает наращивание и расширение системы.

Узлы связаны между собой высокопроизводительным коммутатором (IBM high-performance switch), который имеет многостадийную структуру и работает с коммутацией пакетов.

Каждый узел SP работает под управлением полноценной ОС AIX, благодаря чему можно использовать тысячи уже существующих приложений для этой ОС. Кроме того, узлы системы можно объединять в группы. К примеру, несколько узлов могут выполнять роль серверов Lotus Notes, в то время как все остальные — обрабатывать параллельную базу данных.

Управление большими системами — это всегда сложная задача. SP использует для этих целей одну графическую консоль, на которой отображаются состояния аппаратного и программного обеспечения, выполняемые задачи и информация о пользователях. Системный администратор при помощи такой консоли (управляющей рабочей станции) и прилагаемого к SP программного продукта PSSP (Parallel Systems Support Programs) решает задачи управления, в том числе управления защитой паролями и полномочиями пользователей, учета выполняемых задач, управления печатью, системного мониторинга, запуска и выключения системы.

Самые-самые

Как уже отмечалось, согласно Top500 (таблица), самый мощный суперкомпьютер современности — ASCI White, занимающий площадь размером в две баскетбольные площадки и установленный в Ливерморской национальной лаборатории. Он включает 512 SMP-узлов на базе 64-разрядных процессоров POWER3-II (в общей сложности 8192 процессора) и использует новую коммуникационную технологию Colony с пропускной способностью около 500 Мбайт/с, что почти в четыре раза быстрее коммутатора SP high-performance switch.

Первая десятка Top500 (18-я редакция)

Позиция Производитель Компьютер Где установлен Страна Год Число процес-соров
1 IBM ASCI White США 2000 8192
2 Compaq AlphaServer SC Питтсбургский суперкомпью-терный центр США 2001 3024
3 IBM SP Power3 Институт исследований в области энергетики NERSC США 2001 3328
4 Intel ASCI Red Национальная лаборатория Sandia США 1999 9632
5 IBM ASCI Blue Pacific Ливерморская национальная лаборатория США 1999 5808
6 Compaq AlphaServer SC США 2001 1536
7 Hitachi SR8000/MPP Токийский университет Япония 2001 1152
8 SGI ASCI Blue Mountain Лос-Аламосская национальная лаборатория США 1998 6144
9 IBM SP Power3 Океанографи-ческий центр NAVOCEANO США 2000 1336
10 IBM SP Power3 Немецкая служба погоды Германия 2001 1280

Архитектура нового суперкомпьютера основана на зарекомендовавшей себя массивно-параллельной архитектуре RS/6000 и обеспечивает производительность в 12,3 Тфлопс (триллионов операций в секунду). Система включает в общей сложности 8 Тбайт оперативной памяти, распределенной по 16-процессорным SMP-узлам, и 160 Тбайт дисковой памяти. Доставка системы из лабораторий IBM в штате Нью-Йорк в Ливермор (Калифорния) потребовалось 28 грузовиков-трейлеров.

Все узлы системы работают под управлением ОС AIX. Суперкомпьютер используется учеными Министерства энергетики США для расчета сложных трехмерных моделей с целью поддержания ядерного оружия в безопасном состоянии. Собственно ASCI White — это третий шаг в пятиступенчатой программе ASCI, которая планирует создание нового суперкомпьютера в 2004 г. Вообще говоря, ASCI White состоит из трех отдельных систем, среди которых самой большой является White (512 узлов, 8192 процессора), а есть еще Ice (28 узлов, 448 процессоров) и Frost (68 узлов, 1088 процессоров).

Предшественником ASCI White был суперкомпьютер Blue Pacific (другое название ASCI Blue), включающий 1464 четырехпроцессорных узла на базе кристаллов PowerPC 604e/332 МГц. Узлы связаны в единую систему с помощью кабелей общей длиной почти в пять миль, а площадь машинного зала составляет 8 тыс. квадратных футов. Система ASCI Blue состоит в общей сложности из 5856 процессоров и обеспечивает пиковую производительность в 3,88 Тфлопс. Суммарный объем оперативной памяти составляет 2,6 Тбайт.

Суперкомпьютер — это километры кабелей.

Американский национальный центр по исследованию атмосферы (NCAR) выбрал IBM в качестве поставщика самого мощного в мире суперкомпьютера, предназначенного для прогнозирования климатических изменений. Система, известная под именем Blue Sky («Синее небо»), после окончательного ввода в эксплуатацию в этом году на порядок увеличит возможности NCAR в области моделирования климата. Ядром Blue Sky станут суперкомпьютер IBM SP и системы IBM eServer p690, применение которых позволит добиться пиковой производительности почти в 7 Тфлопс при объеме дисковой подсистемы IBM SSA в 31,5 Тбайт.

Суперкомпьютер, получивший название «Синий шторм» (Blue Storm), создается по заказу Европейского центра среднесрочных прогнозов погоды (European Centre for Medium-Range Weather Forecasts — ECMWF). Blue Storm будет в два раза мощнее ASCI White. Для его создания необходимо 100 серверов IBM eServer p690, также известных как Regatta. Каждый системный блок размером с холодильник содержит более тысячи процессоров. В 2004 г. «Синий шторм» будет оснащен серверами нового поколения p960, которые сделают его еще в два раза мощнее. Суперкомпьютер будет работать под управлением ОС AIX. Первоначально общая емкость накопителей Blue Storm составит 1,5 петабайт, вычислительная мощь — около 23 Тфлопс. Система будет весить 130 т, а по мощи будет в 1700 раз превосходить шахматный суперкомпьютер Deep Blue.

Исследователи IBM совместно с Ливерморской национальной лабораторией ведут работы над компьютерами Blue Gene/L и Blue Gene/C. Эти компьютеры — часть начатого еще в 1999 г. с целью изучения белков 5-летнего проекта Blue Gene, в который было вложено 100 млн долл. Создание нового суперкомпьютера Blue Gene/L (200 Тфлоп) будет завершено в 2004 г. — на полгода-год раньше, чем ожидается завершение работ над более мощным компьютером Blue Gene/C (1000 Тфлоп). Проектная производительность Blue Gene/L будет, таким образом, превышать суммарную производительность 500 самых мощных компьютеров в мире. При этом новый суперкомпьютер занимает площадь, равную всего половине теннисного корта. Инженеры IBM поработали и над снижением потребления энергии — его удалось уменьшить в 15 раз.

Примечания

Тесты LINPACK .
Эталонные тесты LINPACK базируются на решении системы линейных уравнений с плотно заполненной матрицей коэффициентов над полем действительных чисел методом исключения Гаусса. Вещественные числа, как правило, представляются с полной точностью. Благодаря большому числу операций над вещественными числами результаты LINPACK принято считать эталоном производительности аппаратно-программной конфигурации в областях, интенсивно использующих сложные математические вычисления.

Earth Simulator .
По мнению журнала New Scientist, в новой, 19-й версии списка суперкомпьютеров Top500 на первое место выйдет суперкомпьютерная система для проекта Earth Simulator корпорации NEC. Она установлена в японском Институте наук о Земле (Yokohama Institute for Earth Sciences) в г. Канагава, префектура Йокогама. Разработчики утверждают, что ее пиковая производительность может достигать 40 Тфлопс.

Суперкомпьютер Earth Simulator предназначен для моделирования климатических изменений на основе данных, которые поступают со спутников. По утверждению представителей NEC, высокая производительность компьютера достигнута за счет использования специально разработанных векторных процессоров. Система базируется на 5120 таких процессорах, объединенных в 640 узлов SX-6 (по 8 процессоров в каждом). Суперкомпьютер работает под управлением ОС SUPER-UX. В числе средств разработки установлены компиляторы языков C/C++, Fortran 90 и HPF, а также средства автоматической векторизации, реализация интерфейса MPI-2 и математическая библиотека ASL/ES. Вся машина занимает площадь трех теннисных кортов (50в65 м) и использует несколько километров кабеля.